Welcome to the IKCEST

Materials & Design | Vol., Issue. | 2021-01-23 | Pages 109513

Materials & Design

Axial crushing behaviors of buckling induced triangular tubular structures

Hualin Fan   Jianhua Dong   Weiwei Li  
Abstract

To reduce the initial peak force (IPF) and improve the crushing force efficiency (CFE) of tubular energy absorbers, buckling induced tubes (BITs) were designed based on modal analysis of straight-walled triangular tubes. The crushing mechanism of the BIT under quasi-static compression was revealed through finite element analysis (FEA) and theoretical analysis. It is found that the BIT can be folded according to specific mode by cleverly presetting the convex-concave structure form. The larger is the amplitude of the buckling wave, the smaller is the IPF, as well as the mean crushing force (MCF). But the CFE is greatly improved. Compared with straight tubes, high-order mode BITs have lower IPF but greater MCF, CFE and specific energy absorption (SEA). A simplified model based on Shanley model was proposed to predict the IPF of the BIT. The MCF was predicted by improved super folding element (SFE) and simplified super folding element (SSFE) models. End buckling induction mechanism is introduced as an efficient way to reduce the IPF, but keep the MCF and enhance the CFE simultaneously.

Original Text (This is the original text for your reference.)

Axial crushing behaviors of buckling induced triangular tubular structures

To reduce the initial peak force (IPF) and improve the crushing force efficiency (CFE) of tubular energy absorbers, buckling induced tubes (BITs) were designed based on modal analysis of straight-walled triangular tubes. The crushing mechanism of the BIT under quasi-static compression was revealed through finite element analysis (FEA) and theoretical analysis. It is found that the BIT can be folded according to specific mode by cleverly presetting the convex-concave structure form. The larger is the amplitude of the buckling wave, the smaller is the IPF, as well as the mean crushing force (MCF). But the CFE is greatly improved. Compared with straight tubes, high-order mode BITs have lower IPF but greater MCF, CFE and specific energy absorption (SEA). A simplified model based on Shanley model was proposed to predict the IPF of the BIT. The MCF was predicted by improved super folding element (SFE) and simplified super folding element (SSFE) models. End buckling induction mechanism is introduced as an efficient way to reduce the IPF, but keep the MCF and enhance the CFE simultaneously.

+More

Keywords

CFE SFE Shanley End BIT

Cite this article
APA

APA

MLA

Chicago

Hualin Fan,Jianhua Dong, Weiwei Li,.Axial crushing behaviors of buckling induced triangular tubular structures. (),109513.

Disclaimer: The translated content is provided by third-party translation service providers, and IKCEST shall not assume any responsibility for the accuracy and legality of the content.
Translate engine
Article's language
English
中文
Pусск
Français
Español
العربية
Português
Kikongo
Dutch
kiswahili
هَوُسَ
IsiZulu
Action
Recommended articles

Report

Select your report category*



Reason*



By pressing send, your feedback will be used to improve IKCEST. Your privacy will be protected.

Submit
Cancel