Welcome to the IKCEST

Research Square | Vol., Issue. | 2020-10-19 | Pages

Research Square

Bisindolylmaleimide IX: A novel anti-SARS-CoV2 agent targeting viral main protease 3CLpro demonstrated by virtual screening and in vitro assays

Dickinson, Bryan C.   Azizi, Saara-Anne   Kathayat, Rahul S.   Dye, John M.   Rathi, Brijesh   Zak, Samantha E.   Bharti, Ajay   Husein, Hamza   Becker, Daniel P.   Pearce, Catherine M.   Ilc, David J.   Maciorowski, Dawid   Kempaiah, Prakasha   Herbert, Andrew S.   Jones, Krysten A.   Durvasula, Ravi   Gupta, Yash   Mathur, Raman  
Abstract

The emergence of SARS/MERS drug-resistant SARS-CoV2 comes with higher rates of transmission and mortality. Like all coronaviruses, SARS-CoV-2 is a relatively large virus consisting of several enzymes with essential functions within its proteome. Here, we focused on repurposing approved and investigational drugs by identifying potential drugs that are predicted to effectively inhibit critical enzymes. We targeted seven proteins with enzymatic activities known to be essential at different stages of the viral multiplication cycle including PLpro, 3CLpro, RdRP, Helicase, ExoN, NendoU, and 2’-O-MT. For virtual screening, the energy minimization of a crystal structure of the modeled protein was carried out using the Protein Preparation Wizard(Schrodinger LLC 2020-1). Following active site selection based on data mining and COACH predictions, we performed a high-throughput virtual screen of drugs (n=5903) that are approved by worldwide regulatory bodies. The screening was performed against viral targets using three sequential docking modes (i.e. HTVS, SP, and XP). Our in-silico virtual screening identified ~290 potential drugs based on the criteria of energy, docking parameters, ligand, and binding site strain and score. Drugs specific to each target protein were further analyzed for binding free energy perturbation by molecular mechanics (prime MM-GBSA) and pruning the hits to the top 32 candidates. The top lead from each target pool was further subjected to molecular dynamics simulation using the Desmond module. Herein we report the evaluation of in-vitro efficacy of selected hit drug molecules on SARS-CoV-2 inhibition. Among eight molecules included in our evaluation, we found inhibitor of protein kinase C isoforms, Bisindolylmaleimide IX (BIM IX), as the potent inhibitor of SARS-CoV-2 in-vitro. Further, in-silico predicted target validation through enzymatic assays confirmed 3CLpro to be the target. Therefore, our data support advancing BIM IX for clinical evaluation as a potential treatment for COVID-19. This is the first study that has showcased the possibility of using bisindolylmaleimide IX to treat COVID-19 through this pipeline.

Original Text (This is the original text for your reference.)

Bisindolylmaleimide IX: A novel anti-SARS-CoV2 agent targeting viral main protease 3CLpro demonstrated by virtual screening and in vitro assays

The emergence of SARS/MERS drug-resistant SARS-CoV2 comes with higher rates of transmission and mortality. Like all coronaviruses, SARS-CoV-2 is a relatively large virus consisting of several enzymes with essential functions within its proteome. Here, we focused on repurposing approved and investigational drugs by identifying potential drugs that are predicted to effectively inhibit critical enzymes. We targeted seven proteins with enzymatic activities known to be essential at different stages of the viral multiplication cycle including PLpro, 3CLpro, RdRP, Helicase, ExoN, NendoU, and 2’-O-MT. For virtual screening, the energy minimization of a crystal structure of the modeled protein was carried out using the Protein Preparation Wizard(Schrodinger LLC 2020-1). Following active site selection based on data mining and COACH predictions, we performed a high-throughput virtual screen of drugs (n=5903) that are approved by worldwide regulatory bodies. The screening was performed against viral targets using three sequential docking modes (i.e. HTVS, SP, and XP). Our in-silico virtual screening identified ~290 potential drugs based on the criteria of energy, docking parameters, ligand, and binding site strain and score. Drugs specific to each target protein were further analyzed for binding free energy perturbation by molecular mechanics (prime MM-GBSA) and pruning the hits to the top 32 candidates. The top lead from each target pool was further subjected to molecular dynamics simulation using the Desmond module. Herein we report the evaluation of in-vitro efficacy of selected hit drug molecules on SARS-CoV-2 inhibition. Among eight molecules included in our evaluation, we found inhibitor of protein kinase C isoforms, Bisindolylmaleimide IX (BIM IX), as the potent inhibitor of SARS-CoV-2 in-vitro. Further, in-silico predicted target validation through enzymatic assays confirmed 3CLpro to be the target. Therefore, our data support advancing BIM IX for clinical evaluation as a potential treatment for COVID-19. This is the first study that has showcased the possibility of using bisindolylmaleimide IX to treat COVID-19 through this pipeline.

+More

Cite this article
APA

APA

MLA

Chicago

Dickinson, Bryan C., Azizi, Saara-Anne, Kathayat, Rahul S., Dye, John M., Rathi, Brijesh, Zak, Samantha E., Bharti, Ajay, Husein, Hamza, Becker, Daniel P., Pearce, Catherine M., Ilc, David J., Maciorowski, Dawid, Kempaiah, Prakasha, Herbert, Andrew S., Jones, Krysten A., Durvasula, Ravi,Gupta, Yash, Mathur, Raman,.Bisindolylmaleimide IX: A novel anti-SARS-CoV2 agent targeting viral main protease 3CLpro demonstrated by virtual screening and in vitro assays. (),.

Disclaimer: The translated content is provided by third-party translation service providers, and IKCEST shall not assume any responsibility for the accuracy and legality of the content.
Translate engine
Article's language
English
中文
Pусск
Français
Español
العربية
Português
Kikongo
Dutch
kiswahili
هَوُسَ
IsiZulu
Action
Recommended articles

Report

Select your report category*



Reason*



By pressing send, your feedback will be used to improve IKCEST. Your privacy will be protected.

Submit
Cancel