Welcome to the IKCEST

Transportation Research Part C: Emerging Technologies | Vol.120, Issue. | 2020-11-01 | Pages 102773

Transportation Research Part C: Emerging Technologies

A bi-level cooperative driving strategy allowing lane changes

Huile Xu   Christos G. Cassandras   Li Li   Yi Zhang   Shuo Feng  
Abstract

This paper studies the cooperative driving of connected and automated vehicles (CAVs) at conflict areas (e.g., non-signalized intersections and ramping regions). Due to safety concerns, most existing studies prohibit lane change since this may cause lateral collisions when coordination is not appropriately performed. However, in many traffic scenarios (e.g., work zones), vehicles must change lanes. To solve this problem, we categorize the potential collision into two kinds and thus establish a bi-level planning problem. The right-of-way of vehicles for the critical conflict zone is considered in the upper-level, and the right-of-way of vehicles during lane changes is then resolved in the lower-level. The solutions of the upper-level problem are represented in tree space, and a near-optimal solution is searched for by combining Monte Carlo Tree Search (MCTS) with some heuristic rules within a very short planning time. The proposed strategy is suitable for not only the shortest delay objective but also other objectives (e.g., energy-saving). Numerical examples show that the proposed strategy leads to good traffic performance in real-time.

Original Text (This is the original text for your reference.)

A bi-level cooperative driving strategy allowing lane changes

This paper studies the cooperative driving of connected and automated vehicles (CAVs) at conflict areas (e.g., non-signalized intersections and ramping regions). Due to safety concerns, most existing studies prohibit lane change since this may cause lateral collisions when coordination is not appropriately performed. However, in many traffic scenarios (e.g., work zones), vehicles must change lanes. To solve this problem, we categorize the potential collision into two kinds and thus establish a bi-level planning problem. The right-of-way of vehicles for the critical conflict zone is considered in the upper-level, and the right-of-way of vehicles during lane changes is then resolved in the lower-level. The solutions of the upper-level problem are represented in tree space, and a near-optimal solution is searched for by combining Monte Carlo Tree Search (MCTS) with some heuristic rules within a very short planning time. The proposed strategy is suitable for not only the shortest delay objective but also other objectives (e.g., energy-saving). Numerical examples show that the proposed strategy leads to good traffic performance in real-time.

+More

Keywords

Tree Carlo Monte

Cite this article
APA

APA

MLA

Chicago

Huile Xu, Christos G. Cassandras, Li Li, Yi Zhang, Shuo Feng,.A bi-level cooperative driving strategy allowing lane changes. 120 (),102773.

Disclaimer: The translated content is provided by third-party translation service providers, and IKCEST shall not assume any responsibility for the accuracy and legality of the content.
Translate engine
Article's language
English
中文
Pусск
Français
Español
العربية
Português
Kikongo
Dutch
kiswahili
هَوُسَ
IsiZulu
Action
Recommended articles

Report

Select your report category*



Reason*



By pressing send, your feedback will be used to improve IKCEST. Your privacy will be protected.

Submit
Cancel