Welcome to the IKCEST

arXiv | Vol., Issue. | 2020-10-08 | Pages

arXiv

Extracting a Knowledge Base of Mechanisms from COVID-19 Papers

Schwartz, Roy   Horvitz, Eric   Hajishirzi, Hannaneh   Amini, Aida   van Zuylen, Madeleine   Wadden, David   Hope, Tom  
Abstract

The urgency of mitigating COVID-19 has spawned a large and diverse body of scientific literature that is challenging for researchers to navigate. This explosion of information has stimulated interest in automated tools to help identify useful knowledge. We have pursued the use of methods for extracting diverse forms of mechanism relations from the natural language of scientific papers. We seek to identify concepts in COVID-19 and related literature which represent activities, functions, associations and causal relations, ranging from cellular processes to economic impacts. We formulate a broad, coarse-grained schema targeting mechanism relations between open, free-form entities. Our approach strikes a balance between expressivity and breadth that supports generalization across diverse concepts. We curate a dataset of scientific papers annotated according to our novel schema. Using an information extraction model trained on this new corpus, we construct a knowledge base (KB) of 2M mechanism relations, which we make publicly available. Our model is able to extract relations at an F1 at least twice that of baselines such as open IE or related scientific IE systems. We conduct experiments examining the ability of our system to retrieve relevant information on viral mechanisms of action, and on applications of AI to COVID-19 research. In both cases, our system identifies relevant information from our automatically-constructed knowledge base with high precision.

Original Text (This is the original text for your reference.)

Extracting a Knowledge Base of Mechanisms from COVID-19 Papers

The urgency of mitigating COVID-19 has spawned a large and diverse body of scientific literature that is challenging for researchers to navigate. This explosion of information has stimulated interest in automated tools to help identify useful knowledge. We have pursued the use of methods for extracting diverse forms of mechanism relations from the natural language of scientific papers. We seek to identify concepts in COVID-19 and related literature which represent activities, functions, associations and causal relations, ranging from cellular processes to economic impacts. We formulate a broad, coarse-grained schema targeting mechanism relations between open, free-form entities. Our approach strikes a balance between expressivity and breadth that supports generalization across diverse concepts. We curate a dataset of scientific papers annotated according to our novel schema. Using an information extraction model trained on this new corpus, we construct a knowledge base (KB) of 2M mechanism relations, which we make publicly available. Our model is able to extract relations at an F1 at least twice that of baselines such as open IE or related scientific IE systems. We conduct experiments examining the ability of our system to retrieve relevant information on viral mechanisms of action, and on applications of AI to COVID-19 research. In both cases, our system identifies relevant information from our automatically-constructed knowledge base with high precision.

+More

Cite this article
APA

APA

MLA

Chicago

Schwartz, Roy, Horvitz, Eric, Hajishirzi, Hannaneh,Amini, Aida, van Zuylen, Madeleine, Wadden, David, Hope, Tom,.Extracting a Knowledge Base of Mechanisms from COVID-19 Papers. (),.

Disclaimer: The translated content is provided by third-party translation service providers, and IKCEST shall not assume any responsibility for the accuracy and legality of the content.
Translate engine
Article's language
English
中文
Pусск
Français
Español
العربية
Português
Kikongo
Dutch
kiswahili
هَوُسَ
IsiZulu
Action
Recommended articles

Report

Select your report category*



Reason*



By pressing send, your feedback will be used to improve IKCEST. Your privacy will be protected.

Submit
Cancel