Welcome to the IKCEST

2016 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV 2016) | Vol., Issue. | | Pages 9

2016 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV 2016)

Learning a Structured Dictionary for Video-based Face Recognition

Zheng, JJ    Chellappa, R   Xu, HY    Alavi, A   
Abstract

In this paper, we propose a structured dictionary learning framework for video-based face recognition. We discover the invariant structural information from different videos of each subject. Specifically, we employ dictionary learning and low-rank approximation to preserve the invariant structure of face images in videos. The learned dictionary is both discriminative and reconstructive. Thus, we not only minimize the reconstruction error of all the face images but also encourage a sub-dictionary to represent the corresponding subject from different videos. Moreover, by introducing the low-rank approximation, the proposed method is able to discover invariant structured information from different videos of the same subject. To this end, an efficient alternating algorithm is employed to learn our structured dictionary. Extensive experiments on three video-based face recognition databases show that our approach outperforms several state-of-the-art methods.

Original Text (This is the original text for your reference.)

Learning a Structured Dictionary for Video-based Face Recognition

In this paper, we propose a structured dictionary learning framework for video-based face recognition. We discover the invariant structural information from different videos of each subject. Specifically, we employ dictionary learning and low-rank approximation to preserve the invariant structure of face images in videos. The learned dictionary is both discriminative and reconstructive. Thus, we not only minimize the reconstruction error of all the face images but also encourage a sub-dictionary to represent the corresponding subject from different videos. Moreover, by introducing the low-rank approximation, the proposed method is able to discover invariant structured information from different videos of the same subject. To this end, an efficient alternating algorithm is employed to learn our structured dictionary. Extensive experiments on three video-based face recognition databases show that our approach outperforms several state-of-the-art methods.

+More

Cite this article
APA

APA

MLA

Chicago

Zheng, JJ ,Chellappa, R,Xu, HY ,Alavi, A ,.Learning a Structured Dictionary for Video-based Face Recognition. (),9.

Disclaimer: The translated content is provided by third-party translation service providers, and IKCEST shall not assume any responsibility for the accuracy and legality of the content.
Translate engine
Article's language
English
中文
Pусск
Français
Español
العربية
Português
Kikongo
Dutch
kiswahili
هَوُسَ
IsiZulu
Action
Recommended articles

Report

Select your report category*



Reason*



By pressing send, your feedback will be used to improve IKCEST. Your privacy will be protected.

Submit
Cancel