Nutritional neuroscience | Vol.10, Issue.3-4 | | Pages 145-50
Can a reward-based behavioural test be used to investigate the effect of protein-energy malnutrition on hippocampal function?
Our laboratory is investigating the effects of protein-energy malnutrition (PEM) on cognitive outcome following global ischemia. Here, we investigated whether PEM independently impairs working memory in the T-maze and if the associated food reward reverses PEM. Gerbils were fed 12.5% (control diet) or 2% protein. A loss of body weight (20.1%) in the 2% protein group and decreased food intake and serum albumin concentration compared to controls (17.5% and 18.2%, respectively) indicated that PEM was achieved. Based on T-maze criterion frequently used in ischemia studies, no difference was observed in the mean (+/- SEM) number of trials required (control 5.2 +/- 0.7; PEM 4.9 +/- 0.4; p = 0.758) or the number of animals reaching criterion (control 10/12; PEM 12/12; p = 0.140). Using more stringent criterion, PEM animals required fewer trials (control 7.3 +/- 0.7; PEM 5.4 +/- 0.4; p = 0.035), and more reached criterion (control 8/12; PEM 12/12; p = 0.028). PEM may increase motivation to obtain a food reward.
Original Text (This is the original text for your reference.)
Can a reward-based behavioural test be used to investigate the effect of protein-energy malnutrition on hippocampal function?
Our laboratory is investigating the effects of protein-energy malnutrition (PEM) on cognitive outcome following global ischemia. Here, we investigated whether PEM independently impairs working memory in the T-maze and if the associated food reward reverses PEM. Gerbils were fed 12.5% (control diet) or 2% protein. A loss of body weight (20.1%) in the 2% protein group and decreased food intake and serum albumin concentration compared to controls (17.5% and 18.2%, respectively) indicated that PEM was achieved. Based on T-maze criterion frequently used in ischemia studies, no difference was observed in the mean (+/- SEM) number of trials required (control 5.2 +/- 0.7; PEM 4.9 +/- 0.4; p = 0.758) or the number of animals reaching criterion (control 10/12; PEM 12/12; p = 0.140). Using more stringent criterion, PEM animals required fewer trials (control 7.3 +/- 0.7; PEM 5.4 +/- 0.4; p = 0.035), and more reached criterion (control 8/12; PEM 12/12; p = 0.028). PEM may increase motivation to obtain a food reward.
+More
Select your report category*
Reason*
New sign-in location:
Last sign-in location:
Last sign-in date: