Welcome to the IKCEST
Rejuvenated fibroblasts can recover the ability to contract

Rejuvenated fibroblasts can recover the ability to contract

Rejuvenated fibroblasts can recover the ability to contract
The photo above shows microscopic imaging of the control (left) and rejuvenated fibroblasts (right), with fluorescent labels highlighting the nucleus (blue), nuclear envelope (green), and cytoskeleton (in magenta). The presence of more contractile proteins (in red) in the rejuvenated fibroblasts indicates that they have recovered their ability to contract. Credit: National University of Singapore

Fibroblasts are the most common connective tissue cells. They produce the structural framework for animal tissues, synthesise the extracellular matrix and collagen, and play a critical role in wound healing. However, during the cellular aging process, fibroblasts lose their ability to contract, leading to stiffness due to reduced connective tissues.

A study from the Mechanobiology Institute at the National University of Singapore has shown that these fibroblasts can be rejuvenated, or redifferentiated, by being geometrically confined on micropatterns. The above shows microscopic imaging of the control (left) and rejuvenated fibroblasts (right), with fluorescent labels highlighting the nucleus (blue), (green), and cytoskeleton (in magenta). The presence of more contractile proteins (in red) in the rejuvenated fibroblasts indicates that they have recovered their ability to contract. These rejuvenated cells were observed to have reduced DNA damage, and enhanced cytoskeletal gene expression.

The results of this study were first published in the Proceedings of the National Academy of Sciences on 29 April 2020.

The research team believes that their mechanical reprogramming approach can overcome the shortcomings of conventional rejuvenation methods, including generation of short-lived or oncogenic fibroblasts. These mechanically rejuvenated fibroblasts could potentially be used as clinical implants in and stem cell engineering.


Explore further

Study reveals disparity between fibroblasts of different pancreatic diseases

More information: Bibhas Roy et al. Fibroblast rejuvenation by mechanical reprogramming and redifferentiation, Proceedings of the National Academy of Sciences (2020). DOI: 10.1073/pnas.1911497117
Citation: Rejuvenated fibroblasts can recover the ability to contract (2020, May 26) retrieved 26 May 2020 from https://medicalxpress.com/news/2020-05-rejuvenated-fibroblasts-recover-ability.html
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.

Original Text (This is the original text for your reference.)

Rejuvenated fibroblasts can recover the ability to contract

Rejuvenated fibroblasts can recover the ability to contract
The photo above shows microscopic imaging of the control (left) and rejuvenated fibroblasts (right), with fluorescent labels highlighting the nucleus (blue), nuclear envelope (green), and cytoskeleton (in magenta). The presence of more contractile proteins (in red) in the rejuvenated fibroblasts indicates that they have recovered their ability to contract. Credit: National University of Singapore

Fibroblasts are the most common connective tissue cells. They produce the structural framework for animal tissues, synthesise the extracellular matrix and collagen, and play a critical role in wound healing. However, during the cellular aging process, fibroblasts lose their ability to contract, leading to stiffness due to reduced connective tissues.

A study from the Mechanobiology Institute at the National University of Singapore has shown that these fibroblasts can be rejuvenated, or redifferentiated, by being geometrically confined on micropatterns. The above shows microscopic imaging of the control (left) and rejuvenated fibroblasts (right), with fluorescent labels highlighting the nucleus (blue), (green), and cytoskeleton (in magenta). The presence of more contractile proteins (in red) in the rejuvenated fibroblasts indicates that they have recovered their ability to contract. These rejuvenated cells were observed to have reduced DNA damage, and enhanced cytoskeletal gene expression.

The results of this study were first published in the Proceedings of the National Academy of Sciences on 29 April 2020.

The research team believes that their mechanical reprogramming approach can overcome the shortcomings of conventional rejuvenation methods, including generation of short-lived or oncogenic fibroblasts. These mechanically rejuvenated fibroblasts could potentially be used as clinical implants in and stem cell engineering.


Explore further

Study reveals disparity between fibroblasts of different pancreatic diseases

More information: Bibhas Roy et al. Fibroblast rejuvenation by mechanical reprogramming and redifferentiation, Proceedings of the National Academy of Sciences (2020). DOI: 10.1073/pnas.1911497117
Citation: Rejuvenated fibroblasts can recover the ability to contract (2020, May 26) retrieved 26 May 2020 from https://medicalxpress.com/news/2020-05-rejuvenated-fibroblasts-recover-ability.html
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.
Comments

    Something to say?

    Log in or Sign up for free

    Disclaimer: The translated content is provided by third-party translation service providers, and IKCEST shall not assume any responsibility for the accuracy and legality of the content.
    Translate engine
    Article's language
    English
    中文
    Pусск
    Français
    Español
    العربية
    Português
    Kikongo
    Dutch
    kiswahili
    هَوُسَ
    IsiZulu
    Action
    Related

    Report

    Select your report category*



    Reason*



    By pressing send, your feedback will be used to improve IKCEST. Your privacy will be protected.

    Submit
    Cancel