Welcome to the IKCEST
The cascading origin of the 2018 Kīlauea eruption and implications for future forecasting
  1. 1.

    Neal, C. A. et al. The 2018 rift eruption and summit collapse of Kīlauea Volcano. Science 363, 367–374 (2019).

    ADS  CAS  Article  Google Scholar 

  2. 2.

    Dietterich, H. R. et al. Lava effusion rates and channel dynamics during the 2018 Kilauea lower East Rift Zone eruption. AGU Fall Meet. Abstr. V43C–V40215 (2019).

  3. 3.

    Anderson, K. R. et al. Magma reservoir failure and the onset of caldera collapse at Kīlauea Volcano in 2018. Science 366, eaaz1822 (2019).

  4. 4.

    Tilling, R. I., Kauahikaua, J. P., Brantley, S. R. & Neal, C. A. The Hawaiian Volcano Observatory—a natural laboratory for studying basaltic volcanism. U. S. Geol. Surv. Prof. Pap. 1801, 1–64 (2014).

    Google Scholar 

  5. 5.

    Moore, R. B. Volcanic geology and eruption frequency, lower east rift zone of Kilauea volcano, Hawaii. Bull. Volcanol. 54, 475–483 (1992).

    ADS  Article  Google Scholar 

  6. 6.

    Poland, M. et al. The 2014-2015 Pāhoa lava flow crisis at Kīlauea Volcano, Hawai‘i: Disaster avoided and lessons learned. GSA Today 26, 4–10 (2016).

    Article  Google Scholar 

  7. 7.

    Wright, T. L. et al. Map showing lava-flow hazard zones, Island of Hawaii. U.S. Geol. Surv. Misc. F. Stud. Map MF-2193, (1992).

  8. 8.

    Kauahikaua, J. P. & Tilling, R. I. Natural hazards and risk reduction in Hawai‘i. U. S. Geol. Surv. Prof. Pap. 1801, 397–427 (2014).

    Google Scholar 

  9. 9.

    Wright, T. L. & Klein, F. W. Two hundred years of magma transport and storage at Kīlauea volcano, Hawai‘i, 1790–2008. U.S. Geol. Surv. Prof. Pap. 1806, (2014).

  10. 10.

    Poland, M. P. & Anderson, K. R. Partly cloudy with a chance of lava flows: forecasting volcanic eruptions in the twenty-first century. J. Geophys. Res. Solid Earth 125, 1–32 (2020).

    Article  Google Scholar 

  11. 11.

    Decker, R. W. Forecasting volcanic eruptions. Annu. Rev. Earth Planet. Sci. 14, 267–291 (1986).

    ADS  Article  Google Scholar 

  12. 12.

    Peltier, A., Villeneuve, N., Ferrazzini, V. & Testud, S. Changes in the long-term geophysical eruptive precursors at Piton de la Fournaise: implications for the response management. Front. Earth Sci. 6, 1–10 (2018).

    Article  Google Scholar 

  13. 13.

    Cameron, C. E. et al. Alaska Volcano Observatory alert and forecasting timeliness: 1989–2017. Front. Earth Sci. 6, 1–16 (2018).

    Article  Google Scholar 

  14. 14.

    Lowenstern, J. B., Sisson, T. W. & Hurwitz, S. Probing magma reservoirs to improve volcano forecasts. Eos 98, (2017).

  15. 15.

    Christiansen, B. R. L. & Peterson, D. W. Chronology of the 1980 eruptive activity. U. S. Geol. Surv. Prof. Pap. 1250, 17–30 (1981).

    Google Scholar 

  16. 16.

    Harris, A. J. L. Basaltic lava flow hazard. Volcan. Hazards, Risks Disasters https://doi.org/10.1016/B978-0-12-396453-3.00002-2 (2015).

  17. 17.

    Harris, A., De Groeve, T., Carn, S. & Garel, F. Risk evaluation, detection and simulation during effusive eruption disasters. Geol. Soc. Lond. Spec. Publ. 426, 1–22 (2016).

    ADS  Article  Google Scholar 

  18. 18.

    Tazieff, H. An exceptional eruption: Mt Niragongo, Jan. 10 1977. Bull. Volcanol. 40, 189–200 (1977).

    ADS  CAS  Article  Google Scholar 

  19. 19.

    Tedesco, D. et al. January 2002 volcano-tectonic eruption of Nyiragongo volcano, Democratic Republic of Congo. J. Geophys. Res. Solid Earth 112, 1–12 (2007).

    Article  Google Scholar 

  20. 20.

    Branca, S., De Beni, E. & Proietti, C. The large and destructive 1669 AD eruption at Etna volcano: reconstruction of the lava flow field evolution and effusion rate trend. Bull. Volcanol. 75, 1–16 (2013).

    Article  Google Scholar 

  21. 21.

    Behncke, B. & Neri, M. The July-August 2001 eruption of Mt. Etna (Sicily). Bull. Volcanol. 65, 461–476 (2003).

    ADS  Article  Google Scholar 

  22. 22.

    Andronico, D. et al. A multi-disciplinary study of the 2002-03 Etna eruption: insights into a complex plumbing system. Bull. Volcanol. 67, 314–330 (2005).

    ADS  Article  Google Scholar 

  23. 23.

    Lockwood, J. et al. The 1984 eruption of Mauna Loa Volcano, Hawaii. Eos, Trans. Am. Geophys. Union 66, 169–171 (1985).

    ADS  Article  Google Scholar 

  24. 24.

    Richter, D. H., Eaton, J. P., Murata, K. J., Ault, W. U. & Krivoy, H. L. Chronological narrative of the 1959-60 eruption of Kilauea Volcano, Hawaii. U.S. Geol. Surv. Prof. Pap. 537-E, 73 (1970).

  25. 25.

    Heliker, C. & Mattox, T. N. The first two decades of the Pu‘u ‘Ō‘ō-Kupaianaha eruption: chronology and selected bibliography. U. S. Geol. Surv. Prof. Pap. 1676, 1–27 (2003).

    Google Scholar 

  26. 26.

    Eaton, J. P. & Murata, K. J. How volcanoes grow. Sci. (80-.) 132, 925–938 (1960).

    ADS  CAS  Article  Google Scholar 

  27. 27.

    Poland, M. P., Miklius, A. & Montgomery-Brown, E. K. Magma supply, storage, and transport at shield-stage Hawaiian volcanoes. U. S. Geol. Surv. Prof. Pap. 1801, 179–234 (2014).

    Google Scholar 

  28. 28.

    Johnson, D. J. Molten core model for Hawaiian rift zones. J. Volcanol. Geotherm. Res. 66, 27–35 (1995).

    ADS  CAS  Article  Google Scholar 

  29. 29.

    Delaney, P. T. et al. Deep magma body beneath the summit and rift zones of Kilauea volcano, Hawaii. Science 247, 1311–1316 (1990).

    ADS  CAS  Article  Google Scholar 

  30. 30.

    Owen, S. et al. Rapid deformation of Kilauea Volcano: Global Positioning System measurements between 1990 and 1996. J. Geophys. Res. 105, 18983–18998 (2000).

    ADS  CAS  Article  Google Scholar 

  31. 31.

    Owen, S. et al. January 30, 1997 eruptive event on Kilauea Volcano, Hawaii, as monitored by continuous GPS. Geophys. Res. Lett. 27, 2757–2760 (2000).

    ADS  Article  Google Scholar 

  32. 32.

    Cervelli, P. et al. The 12 September 1999 Upper East Rift Zone dike intrusion at Kilauea Volcano, Hawaii. J. Geophys. Res. 107, 1–13 (2002).

    Google Scholar 

  33. 33.

    Montgomery-Brown, E. K. et al. Geodetic evidence for en echelon dike emplacement and concurrent slow slip during the June 2007 intrusion and eruption at Kīlauea volcano, Hawaii. J. Geophys. Res. 115, 1–15 (2010).

    Google Scholar 

  34. 34.

    Montgomery-Brown, E. K. et al. Spatiotemporal evolution of dike opening and décollement slip at Kīlauea Volcano, Hawai‘i. J. Geophys. Res. 116, 1–14 (2011).

    Google Scholar 

  35. 35.

    Swanson, D., Duffield, W. A. & Fiske, R. Displacement of the South Flank of Kilauea Volcano: the result of forceful intrusion of magma into the rift zones. U.S. Geol. Surv. Prof. Pap. 963, 39 (1976).

  36. 36.

    Brooks, B. A. et al. Magmatically triggered slow slip at Kilauea volcano, Hawaii. Science 321, 1177 (2008).

    ADS  CAS  Article  Google Scholar 

  37. 37.

    Chen, K., Smith, J. D., Avouac, J. P., Song, Y. T. & Gualandi, A. Triggering of the Mw 7.2 Hawaii earthquake of 4 May 2018 by a dike intrusion. Geophys. Res. Lett. 46, 2503–2510 (2019).

    ADS  Article  Google Scholar 

  38. 38.

    Montgomery-Brown, E. K., Poland, M. P. & Miklius, A. A delicate balance of magmatic-tectonic interaction at Kīlauea Volcano, Hawai‘i, revealed from slow slip events. Hawaiian Volcanoes: From Source to Surface. Geophys. Monogr. 208, 269–288 (2015).

    Article  Google Scholar 

  39. 39.

    Denlinger, R. P. & Morgan, J. K. Instability of Hawaiian Volcanoes. U.S. Geol. Surv. Prof. Pap. 1801, 149–176 (2014).

  40. 40.

    Orr, T. R. et al. Kīlauea’s 5–9 March 2011 Kamoamoa fissure eruption and its relation to 30+ years of activity from Pu‘u ‘Ō‘ō. Hawaiian Volcanoes: From Source to Surface. Geophys. Monogr. 208, 393–420 (2015).

    Google Scholar 

  41. 41.

    Biass, S. et al. Insights into pāhoehoe lava emplacement using visible and thermal structure-from-motion photogrammetry. J. Geophys. Res. Solid Earth 124, 5678–5695 (2019).

    ADS  Article  Google Scholar 

  42. 42.

    Wilson, D. et al. Small explosion from new vent at Kilauea’s summit. Eos Trans. Am. Geophys. Union 89, 203 (2008).

    ADS  Article  Google Scholar 

  43. 43.

    Patrick, M., Swanson, D. & Orr, T. A review of controls on lava lake level: insights from Halema‘uma‘u Crater, Kīlauea Volcano. Bull. Volcanol. 81, (2019).

  44. 44.

    Patrick, M. R. et al. Cyclic lava effusion during the 2018 eruption of Kīlauea Volcano. Science 366, eaay9070 (2019).

  45. 45.

    Poland, M. P., Dalfsen, E. D. Z., Van, Bagnardi, M. & Johanson, I. A. Post‐collapse gravity increase at the summit of Kīlauea volcano, Hawaiʻi. Geophys. Res. Lett. 46, 14430–14439 (2019).

    ADS  Article  Google Scholar 

  46. 46.

    Poland, M. P., Miklius, A., Sutton, A. J. & Thornber, C. R. A mantle-driven surge in magma supply to Kīlauea Volcano during 2003–2007. Nat. Geosci. 5, 295–300 (2012).

    ADS  CAS  Article  Google Scholar 

  47. 47.

    Poland, M. et al. New episodes of volcanism at Kilauea Volcano, Hawaii. Eos 89, 37–38 (2008).

    ADS  Article  Google Scholar 

  48. 48.

    Patrick, M., Orr, T., Anderson, K. & Swanson, D. Eruptions in sync: improved constraints on Kīlauea Volcano’s hydraulic connection. Earth Planet. Sci. Lett. 507, 50–61 (2019).

    ADS  CAS  Article  Google Scholar 

  49. 49.

    Anderson, K. R. & Poland, M. P. Bayesian estimation of magma supply, storage, and eruption rates using a multiphysical volcano model: Kīlauea Volcano, 2000–2012. Earth Planet. Sci. Lett. 447, 161–171 (2016).

    ADS  CAS  Article  Google Scholar 

  50. 50.

    Anderson, K., Poland, M., Johnson, J. H. & Miklius, A. Episodic deflation-inflation events at Kīlauea Volcano and implications for the shallow magma system. Hawaiian Volcanoes From Source to Surface. Geophys. Monogr. 208, 229–250 (2015).

    Article  Google Scholar 

  51. 51.

    Patrick, M. R., Anderson, K. R., Poland, M. P., Orr, T. R. & Swanson, D. A. Lava lake level as a gauge of magma reservoir pressure and eruptive hazard. Geology 43, 831–834 (2015).

  52. 52.

    Patrick, M. R., Kauahikaua, J., Orr, T., Davies, A. & Ramsey, M. Operational thermal remote sensing and lava flow monitoring at the Hawaiian Volcano Observatory. Geol. Soc. Lond. Spec. Publ. 426, https://doi.org/10.1144/SP426.17 (2015).

  53. 53.

    Montgomery-Brown, E. K., Segall, P. & Miklius, A. Kilauea slow slip events: identification, source inversions, and relation to seismicity. J. Geophys. Res. 114, 1–20 (2009).

    Google Scholar 

  54. 54.

    Feng, K. F., Huang, H. H. & Wu, Y. M. Detecting pre‑eruptive magmatic processes of the 2018 eruption at Kilauea, Hawaii volcano with ambient noise interferometry. Earth Planets Space https://doi.org/10.1186/s40623-020-01199-x (2020).

  55. 55.

    Wright, R., Blackett, M. & Hill-Butler, C. Some observations regarding the thermal flux from Earth’s erupting volcanoes for the period of 2000 to 2014. Geophys. Res. Lett. 42, 282–289 (2015).

    ADS  Article  Google Scholar 

  56. 56.

    Sutton, A., Elias, T. & Kauahikaua, J. Lava-effusion rates for the Pu‘u ‘Ō‘ō-Kupaianaha eruption derived from SO2 emissions and very low frequency (VLF) measurements. U. S. Geol. Surv. Prof. Pap. 1676, 137–148 (2003).

    Google Scholar 

  57. 57.

    Flinders, A. F. et al. Seismic velocity variations associated with the 2018 lower East Rift Zone eruption of Kīlauea, Hawaiʻi. Bull. Volcanol. 82, 47 (2020).

  58. 58.

    Burton, M. R. et al. Etna 2004-2005: an archetype for geodynamically-controlled effusive eruptions. Geophys. Res. Lett. 32, 1–4 (2005).

    Article  CAS  Google Scholar 

  59. 59.

    Shreve, T. et al. From prodigious volcanic degassing to caldera subsidence and quiescence at Ambrym (Vanuatu): the influence of regional tectonics. Sci. Rep. https://doi.org/10.1038/s41598-019-55141-7 (2019).

  60. 60.

    Olivier, G., Brenguier, F., Carey, R., Okubo, P. & Donaldson, C. Decrease in seismic velocity observed prior to the 2018 eruption of Kīlauea volcano with ambient seismic noise interferometry. Geophys. Res. Lett. 46, 3734–3744 (2019).

    ADS  Article  Google Scholar 

  61. 61.

    Mangan, M. T., Heliker, C. C., Mattox, T. N., Kauahikaua, J. P. & Helz, R. T. Episode 49 of the Pu‘u ‘O‘o-Kupaianaha eruption of Kilauea volcano—breakdown of a steady-state eruptive era. Bull. Volcanol. 57, 127–135 (1995).

    ADS  Google Scholar 

  62. 62.

    Kauahikaua, J., Mangan, M., Heliker, C. & Mattox, T. A quantitative look at the demise of a basaltic vent: the death of Kupaianaha, Kilauea Volcano, Hawai‘i. Bull. Volcanol. 57, 641–648 (1996).

    ADS  Article  Google Scholar 

  63. 63.

    Okubo, P. & Nakata, J. S. Tectonic pulses during Kīlauea’s current long-term eruption. U. S. Geol. Surv. Prof. Pap. 1676, 173–186 (2003).

    Google Scholar 

  64. 64.

    Klein, F. W., Koyanagi, R. Y., Nakata, J. S. & Tanigawa, W. R. The seismicity of Kilauea’s magma system. U. S. Geol. Surv. Prof. Pap. 1350, 1019–1185 (1987).

    Google Scholar 

  65. 65.

    Sigmundsson, F. et al. Segmented lateral dyke growth in a rifting event at Barðarbunga volcanic system, Iceland. Nature 517, 191–195 (2015).

  66. 66.

    Denlinger, R. P. Anatomy of Kilauea volcano. AGU Fall Meet. abstract V51A–06 (2019).

  67. 67.

    Farquharson, J. I. & Amelung, F. Extreme rainfall triggered the 2018 rift eruption at Kīlauea Volcano. Nature 580, 491–495 (2020).

    ADS  CAS  Article  Google Scholar 

  68. 68.

    Kauahikaua, J. P. & Trusdell, F. A. Have humans influenced volcanic activity on the lower East Rift Zone of Kīlauea Volcano? A publication review. U.S. Geol. Surv. Open-File Rep. https://doi.org/10.3133/ofr20201017 (2020).

  69. 69.

    Epp, D., Decker, R. & Okamura, A. T. Relation of summit deformation to East Rift Zone eruptions on Kilauea Volcano, Hawaii. Geophys. Res. Lett. 10, 493–496 (1983).

    ADS  Article  Google Scholar 

  70. 70.

    Liu, C., Lay, T. & Xiong, X. Rupture in the 4 May 2018 MW 6.9 Earthquake Seaward of the Kilauea East Rift Zone Fissure Eruption in Hawaii. Geophys. Res. Lett. 45, 9508–9515 (2018).

    ADS  Article  Google Scholar 

  71. 71.

    Segall, P., Anderson, K. R., Johanson, I. & Miklius, A. Mechanics of inflationary deformation during caldera collapse: evidence from the 2018 Kīlauea eruption. Geophys. Res. Lett. 46, 11782–11789 (2019).

    ADS  Article  Google Scholar 

  72. 72.

    Paine, R. T. Food webs: linkage, interaction strength and community infrastructure. J. Anim. Ecol. 49, 666–685 (1980).

    ADS  Article  Google Scholar 

  73. 73.

    Polis, G. A., Sears, A. L. W., Huxel, G. R., Strong, D. R. & Maron, J. When is a trophic cascade a trophic cascade? Trends Ecol. Evol. 15, 473–475 (2000).

    CAS  Article  Google Scholar 

  74. 74.

    Cashman, K. V. & Scheu, B. Magmatic Fragmentation. Chapter 25 in The Encyclopedia of Volcanoes pp. 459–471 (Elsevier Inc., 2015).

  75. 75.

    Walter, T. R. et al. Complex hazard cascade culminating in the Anak Krakatau sector collapse. Nat. Commun. 10, 4339 (2019).

  76. 76.

    Macdonald, G. A. & Eaton, J. P. Hawaiian Volcanoes During 1955. U.S Geol. Surv. Bull. 1171, 170 (1964).

  77. 77.

    Neal, C. A. & Anderson, K. R. Preliminary analyses of volcanic hazards at Kīlauea volcano, Hawai‘i, 2017–2018. U.S. Geol. Surv. Open-File Rep. https://doi.org/10.3133/ofr20201002 (2020).

  78. 78.

    Jaggar, T. & Finch, R. H. The explosive eruption of Kilauea in Hawaii. 1924. Am. J. Sci. VIII, 353–374 (1924).

    ADS  Article  Google Scholar 

  79. 79.

    Mackworth, N. H. Visual noise causes tunnel vision. Psychon. Sci. 3, 67–68 (1965).

    Article  Google Scholar 

  80. 80.

    Findley, K. A. & Scott, M. S. Multiple dimensions of tunnel vision in criminal cases. Wis. L. Rev. 291, 291–398 (2006).

    Google Scholar 

  81. 81.

    Calvari, S. et al. Lava effusion—a slow fuse for paroxysms at Stromboli volcano? Earth Planet. Sci. Lett. 301, 317–323 (2011).

    ADS  CAS  Article  Google Scholar 

  82. 82.

    Ripepe, M. et al. Forecasting effusive dynamics and decompression rates by magmastatic model at open-vent volcanoes. Sci. Rep. 7, 1–9 (2017).

    CAS  Article  Google Scholar 

  83. 83.

    Sparks, R. S. J. Forecasting volcanic eruptions. Earth Planet. Sci. Lett. 210, 1–15 (2003).

    ADS  CAS  Article  Google Scholar 

  84. 84.

    Gudmundsson, M. T. et al. Gradual caldera collapse at Bárdarbunga volcano, Iceland, regulated by lateral magma outflow. Science 353, aaf8988 (2016).

  85. 85.

    Staudacher, T. et al. The April 2007 eruption and the Dolomieu crater collapse, two major events at Piton de la Fournaise (La Réunion Island, Indian Ocean). J. Volcanol. Geotherm. Res. 184, 126–137 (2009).

    ADS  CAS  Article  Google Scholar 

  86. 86.

    Sigmundsson, F. et al. Unexpected large eruptions from buoyant magma bodies within viscoelastic crust. Nat. Commun. 11, 1–11 (2020).

    Article  CAS  Google Scholar 

  87. 87.

    Newhall, C. & Hoblitt, R. Constructing event trees for volcanic crises. Bull. Volcanol. 64, 3–20 (2002).

    ADS  Article  Google Scholar 

  88. 88.

    Neri, A. et al. Developing an event tree for probabilistic hazard and risk assessment at Vesuvius. J. Volcanol. Geotherm. Res. 178, 397–415 (2008).

    ADS  CAS  Article  Google Scholar 

  89. 89.

    Wright, H. M. N. et al. Construction of probabilistic event trees for eruption forecasting at Sinabung volcano, Indonesia 2013–14. J. Volcanol. Geotherm. Res. 382, 233–252 (2019).

    ADS  CAS  Article  Google Scholar 

  90. 90.

    Aspinall, W. P., Woo, G., Voight, B. & Baxter, P. J. Evidence-based volcanology: application to eruption crises. J. Volcanol. Geotherm. Res. 128, 273–285 (2003).

    ADS  CAS  Article  Google Scholar 

  91. 91.

    Hincks, T. K., Komorowski, J. C., Sparks, S. R. & Aspinall, W. P. Retrospective analysis of uncertain eruption precursors at La Soufrière volcano, Guadeloupe, 1975-77: Volcanic hazard assessment using a Bayesian Belief Network approach. J. Appl. Volcanol. 3, 3 (2014).

  92. 92.

    Sheldrake, T. E., Aspinall, W. P., Odbert, H. M., Wadge, G. & Sparks, R. S. J. Understanding causality and uncertainty in volcanic observations: An example of forecasting eruptive activity on Soufrière Hills Volcano, Montserrat. J. Volcanol. Geotherm. Res. 341, 287–300 (2017).

    ADS  CAS  Article  Google Scholar 

  93. 93.

    Giudicepietro, F. et al. Geophysical precursors of the July-August 2019 paroxysmal eruptive phase and their implications for Stromboli volcano (Italy) monitoring. Sci. Rep. 10, 1–17 (2020).

    Article  CAS  Google Scholar 

  94. 94.

    Miklius, A. et al. Global positioning system measurements on the Island of Hawai‘i: 1997 through 2004. U.S. Geol. Surv. Open-File Rep. http://pubs.usgs.gov/of/2005/1425/ (2005).

  95. 95.

    Okubo, P. G., Nakata, J. S. & Koyanagi, R. Y. The evolution of seismic monitoring systems at the Hawaiian Volcano Observatory. U. S. Geol. Surv. Prof. Pap. 1801, 67–94 (2014).

    Google Scholar 

  96. 96.

    Thelen, W. A. Seismic instrumentation plan for the Hawaiian Volcano Observatory. U. S. Geol. Surv. Sci. Investig. Rep. 2014–5179, 43 (2014).

    Google Scholar 

  97. 97.

    Elias, T., Kern, C., Horton, K. A., Sutton, A. J. & Garbeil, H. Measuring SO2 emission rates at Kīlauea volcano, Hawaii, using an array of upward-looking UV Spectrometers, 2014–2017. Front. Earth Sci. 6, 1–20 (2018).

    Article  Google Scholar 

  98. 98.

    Kern, C. et al. Quantifying gas emissions associated with the 2018 rift eruption of Kīlauea Volcano using ground-based DOAS measurements. Bull. Volcanol. 82, 55 (2020).

  99. 99.

    Orr, T. R., Bleacher, J. E., Patrick, M. R. & Wooten, K. M. A sinuous tumulus over an active lava tube at Kīlauea Volcano: Evolution, analogs, and hazard forecasts. J. Volcanol. Geotherm. Res. 291, 35–48 (2015).

    ADS  CAS  Article  Google Scholar 

  100. 100.

    Patrick, M., Orr, T., Fisher, G., Trusdell, F. & Kauahikaua, J. Thermal mapping of a pāhoehoe lava flow, Kīlauea Volcano. J. Volcanol. Geotherm. Res. 332, 71–87 (2017).

    ADS  CAS  Article  Google Scholar 

Original Text (This is the original text for your reference.)

  1. 1.

    Neal, C. A. et al. The 2018 rift eruption and summit collapse of Kīlauea Volcano. Science 363, 367–374 (2019).

    ADS  CAS  Article  Google Scholar 

  2. 2.

    Dietterich, H. R. et al. Lava effusion rates and channel dynamics during the 2018 Kilauea lower East Rift Zone eruption. AGU Fall Meet. Abstr. V43C–V40215 (2019).

  3. 3.

    Anderson, K. R. et al. Magma reservoir failure and the onset of caldera collapse at Kīlauea Volcano in 2018. Science 366, eaaz1822 (2019).

  4. 4.

    Tilling, R. I., Kauahikaua, J. P., Brantley, S. R. & Neal, C. A. The Hawaiian Volcano Observatory—a natural laboratory for studying basaltic volcanism. U. S. Geol. Surv. Prof. Pap. 1801, 1–64 (2014).

    Google Scholar 

  5. 5.

    Moore, R. B. Volcanic geology and eruption frequency, lower east rift zone of Kilauea volcano, Hawaii. Bull. Volcanol. 54, 475–483 (1992).

    ADS  Article  Google Scholar 

  6. 6.

    Poland, M. et al. The 2014-2015 Pāhoa lava flow crisis at Kīlauea Volcano, Hawai‘i: Disaster avoided and lessons learned. GSA Today 26, 4–10 (2016).

    Article  Google Scholar 

  7. 7.

    Wright, T. L. et al. Map showing lava-flow hazard zones, Island of Hawaii. U.S. Geol. Surv. Misc. F. Stud. Map MF-2193, (1992).

  8. 8.

    Kauahikaua, J. P. & Tilling, R. I. Natural hazards and risk reduction in Hawai‘i. U. S. Geol. Surv. Prof. Pap. 1801, 397–427 (2014).

    Google Scholar 

  9. 9.

    Wright, T. L. & Klein, F. W. Two hundred years of magma transport and storage at Kīlauea volcano, Hawai‘i, 1790–2008. U.S. Geol. Surv. Prof. Pap. 1806, (2014).

  10. 10.

    Poland, M. P. & Anderson, K. R. Partly cloudy with a chance of lava flows: forecasting volcanic eruptions in the twenty-first century. J. Geophys. Res. Solid Earth 125, 1–32 (2020).

    Article  Google Scholar 

  11. 11.

    Decker, R. W. Forecasting volcanic eruptions. Annu. Rev. Earth Planet. Sci. 14, 267–291 (1986).

    ADS  Article  Google Scholar 

  12. 12.

    Peltier, A., Villeneuve, N., Ferrazzini, V. & Testud, S. Changes in the long-term geophysical eruptive precursors at Piton de la Fournaise: implications for the response management. Front. Earth Sci. 6, 1–10 (2018).

    Article  Google Scholar 

  13. 13.

    Cameron, C. E. et al. Alaska Volcano Observatory alert and forecasting timeliness: 1989–2017. Front. Earth Sci. 6, 1–16 (2018).

    Article  Google Scholar 

  14. 14.

    Lowenstern, J. B., Sisson, T. W. & Hurwitz, S. Probing magma reservoirs to improve volcano forecasts. Eos 98, (2017).

  15. 15.

    Christiansen, B. R. L. & Peterson, D. W. Chronology of the 1980 eruptive activity. U. S. Geol. Surv. Prof. Pap. 1250, 17–30 (1981).

    Google Scholar 

  16. 16.

    Harris, A. J. L. Basaltic lava flow hazard. Volcan. Hazards, Risks Disasters https://doi.org/10.1016/B978-0-12-396453-3.00002-2 (2015).

  17. 17.

    Harris, A., De Groeve, T., Carn, S. & Garel, F. Risk evaluation, detection and simulation during effusive eruption disasters. Geol. Soc. Lond. Spec. Publ. 426, 1–22 (2016).

    ADS  Article  Google Scholar 

  18. 18.

    Tazieff, H. An exceptional eruption: Mt Niragongo, Jan. 10 1977. Bull. Volcanol. 40, 189–200 (1977).

    ADS  CAS  Article  Google Scholar 

  19. 19.

    Tedesco, D. et al. January 2002 volcano-tectonic eruption of Nyiragongo volcano, Democratic Republic of Congo. J. Geophys. Res. Solid Earth 112, 1–12 (2007).

    Article  Google Scholar 

  20. 20.

    Branca, S., De Beni, E. & Proietti, C. The large and destructive 1669 AD eruption at Etna volcano: reconstruction of the lava flow field evolution and effusion rate trend. Bull. Volcanol. 75, 1–16 (2013).

    Article  Google Scholar 

  21. 21.

    Behncke, B. & Neri, M. The July-August 2001 eruption of Mt. Etna (Sicily). Bull. Volcanol. 65, 461–476 (2003).

    ADS  Article  Google Scholar 

  22. 22.

    Andronico, D. et al. A multi-disciplinary study of the 2002-03 Etna eruption: insights into a complex plumbing system. Bull. Volcanol. 67, 314–330 (2005).

    ADS  Article  Google Scholar 

  23. 23.

    Lockwood, J. et al. The 1984 eruption of Mauna Loa Volcano, Hawaii. Eos, Trans. Am. Geophys. Union 66, 169–171 (1985).

    ADS  Article  Google Scholar 

  24. 24.

    Richter, D. H., Eaton, J. P., Murata, K. J., Ault, W. U. & Krivoy, H. L. Chronological narrative of the 1959-60 eruption of Kilauea Volcano, Hawaii. U.S. Geol. Surv. Prof. Pap. 537-E, 73 (1970).

  25. 25.

    Heliker, C. & Mattox, T. N. The first two decades of the Pu‘u ‘Ō‘ō-Kupaianaha eruption: chronology and selected bibliography. U. S. Geol. Surv. Prof. Pap. 1676, 1–27 (2003).

    Google Scholar 

  26. 26.

    Eaton, J. P. & Murata, K. J. How volcanoes grow. Sci. (80-.) 132, 925–938 (1960).

    ADS  CAS  Article  Google Scholar 

  27. 27.

    Poland, M. P., Miklius, A. & Montgomery-Brown, E. K. Magma supply, storage, and transport at shield-stage Hawaiian volcanoes. U. S. Geol. Surv. Prof. Pap. 1801, 179–234 (2014).

    Google Scholar 

  28. 28.

    Johnson, D. J. Molten core model for Hawaiian rift zones. J. Volcanol. Geotherm. Res. 66, 27–35 (1995).

    ADS  CAS  Article  Google Scholar 

  29. 29.

    Delaney, P. T. et al. Deep magma body beneath the summit and rift zones of Kilauea volcano, Hawaii. Science 247, 1311–1316 (1990).

    ADS  CAS  Article  Google Scholar 

  30. 30.

    Owen, S. et al. Rapid deformation of Kilauea Volcano: Global Positioning System measurements between 1990 and 1996. J. Geophys. Res. 105, 18983–18998 (2000).

    ADS  CAS  Article  Google Scholar 

  31. 31.

    Owen, S. et al. January 30, 1997 eruptive event on Kilauea Volcano, Hawaii, as monitored by continuous GPS. Geophys. Res. Lett. 27, 2757–2760 (2000).

    ADS  Article  Google Scholar 

  32. 32.

    Cervelli, P. et al. The 12 September 1999 Upper East Rift Zone dike intrusion at Kilauea Volcano, Hawaii. J. Geophys. Res. 107, 1–13 (2002).

    Google Scholar 

  33. 33.

    Montgomery-Brown, E. K. et al. Geodetic evidence for en echelon dike emplacement and concurrent slow slip during the June 2007 intrusion and eruption at Kīlauea volcano, Hawaii. J. Geophys. Res. 115, 1–15 (2010).

    Google Scholar 

  34. 34.

    Montgomery-Brown, E. K. et al. Spatiotemporal evolution of dike opening and décollement slip at Kīlauea Volcano, Hawai‘i. J. Geophys. Res. 116, 1–14 (2011).

    Google Scholar 

  35. 35.

    Swanson, D., Duffield, W. A. & Fiske, R. Displacement of the South Flank of Kilauea Volcano: the result of forceful intrusion of magma into the rift zones. U.S. Geol. Surv. Prof. Pap. 963, 39 (1976).

  36. 36.

    Brooks, B. A. et al. Magmatically triggered slow slip at Kilauea volcano, Hawaii. Science 321, 1177 (2008).

    ADS  CAS  Article  Google Scholar 

  37. 37.

    Chen, K., Smith, J. D., Avouac, J. P., Song, Y. T. & Gualandi, A. Triggering of the Mw 7.2 Hawaii earthquake of 4 May 2018 by a dike intrusion. Geophys. Res. Lett. 46, 2503–2510 (2019).

    ADS  Article  Google Scholar 

  38. 38.

    Montgomery-Brown, E. K., Poland, M. P. & Miklius, A. A delicate balance of magmatic-tectonic interaction at Kīlauea Volcano, Hawai‘i, revealed from slow slip events. Hawaiian Volcanoes: From Source to Surface. Geophys. Monogr. 208, 269–288 (2015).

    Article  Google Scholar 

  39. 39.

    Denlinger, R. P. & Morgan, J. K. Instability of Hawaiian Volcanoes. U.S. Geol. Surv. Prof. Pap. 1801, 149–176 (2014).

  40. 40.

    Orr, T. R. et al. Kīlauea’s 5–9 March 2011 Kamoamoa fissure eruption and its relation to 30+ years of activity from Pu‘u ‘Ō‘ō. Hawaiian Volcanoes: From Source to Surface. Geophys. Monogr. 208, 393–420 (2015).

    Google Scholar 

  41. 41.

    Biass, S. et al. Insights into pāhoehoe lava emplacement using visible and thermal structure-from-motion photogrammetry. J. Geophys. Res. Solid Earth 124, 5678–5695 (2019).

    ADS  Article  Google Scholar 

  42. 42.

    Wilson, D. et al. Small explosion from new vent at Kilauea’s summit. Eos Trans. Am. Geophys. Union 89, 203 (2008).

    ADS  Article  Google Scholar 

  43. 43.

    Patrick, M., Swanson, D. & Orr, T. A review of controls on lava lake level: insights from Halema‘uma‘u Crater, Kīlauea Volcano. Bull. Volcanol. 81, (2019).

  44. 44.

    Patrick, M. R. et al. Cyclic lava effusion during the 2018 eruption of Kīlauea Volcano. Science 366, eaay9070 (2019).

  45. 45.

    Poland, M. P., Dalfsen, E. D. Z., Van, Bagnardi, M. & Johanson, I. A. Post‐collapse gravity increase at the summit of Kīlauea volcano, Hawaiʻi. Geophys. Res. Lett. 46, 14430–14439 (2019).

    ADS  Article  Google Scholar 

  46. 46.

    Poland, M. P., Miklius, A., Sutton, A. J. & Thornber, C. R. A mantle-driven surge in magma supply to Kīlauea Volcano during 2003–2007. Nat. Geosci. 5, 295–300 (2012).

    ADS  CAS  Article  Google Scholar 

  47. 47.

    Poland, M. et al. New episodes of volcanism at Kilauea Volcano, Hawaii. Eos 89, 37–38 (2008).

    ADS  Article  Google Scholar 

  48. 48.

    Patrick, M., Orr, T., Anderson, K. & Swanson, D. Eruptions in sync: improved constraints on Kīlauea Volcano’s hydraulic connection. Earth Planet. Sci. Lett. 507, 50–61 (2019).

    ADS  CAS  Article  Google Scholar 

  49. 49.

    Anderson, K. R. & Poland, M. P. Bayesian estimation of magma supply, storage, and eruption rates using a multiphysical volcano model: Kīlauea Volcano, 2000–2012. Earth Planet. Sci. Lett. 447, 161–171 (2016).

    ADS  CAS  Article  Google Scholar 

  50. 50.

    Anderson, K., Poland, M., Johnson, J. H. & Miklius, A. Episodic deflation-inflation events at Kīlauea Volcano and implications for the shallow magma system. Hawaiian Volcanoes From Source to Surface. Geophys. Monogr. 208, 229–250 (2015).

    Article  Google Scholar 

  51. 51.

    Patrick, M. R., Anderson, K. R., Poland, M. P., Orr, T. R. & Swanson, D. A. Lava lake level as a gauge of magma reservoir pressure and eruptive hazard. Geology 43, 831–834 (2015).

  52. 52.

    Patrick, M. R., Kauahikaua, J., Orr, T., Davies, A. & Ramsey, M. Operational thermal remote sensing and lava flow monitoring at the Hawaiian Volcano Observatory. Geol. Soc. Lond. Spec. Publ. 426, https://doi.org/10.1144/SP426.17 (2015).

  53. 53.

    Montgomery-Brown, E. K., Segall, P. & Miklius, A. Kilauea slow slip events: identification, source inversions, and relation to seismicity. J. Geophys. Res. 114, 1–20 (2009).

    Google Scholar 

  54. 54.

    Feng, K. F., Huang, H. H. & Wu, Y. M. Detecting pre‑eruptive magmatic processes of the 2018 eruption at Kilauea, Hawaii volcano with ambient noise interferometry. Earth Planets Space https://doi.org/10.1186/s40623-020-01199-x (2020).

  55. 55.

    Wright, R., Blackett, M. & Hill-Butler, C. Some observations regarding the thermal flux from Earth’s erupting volcanoes for the period of 2000 to 2014. Geophys. Res. Lett. 42, 282–289 (2015).

    ADS  Article  Google Scholar 

  56. 56.

    Sutton, A., Elias, T. & Kauahikaua, J. Lava-effusion rates for the Pu‘u ‘Ō‘ō-Kupaianaha eruption derived from SO2 emissions and very low frequency (VLF) measurements. U. S. Geol. Surv. Prof. Pap. 1676, 137–148 (2003).

    Google Scholar 

  57. 57.

    Flinders, A. F. et al. Seismic velocity variations associated with the 2018 lower East Rift Zone eruption of Kīlauea, Hawaiʻi. Bull. Volcanol. 82, 47 (2020).

  58. 58.

    Burton, M. R. et al. Etna 2004-2005: an archetype for geodynamically-controlled effusive eruptions. Geophys. Res. Lett. 32, 1–4 (2005).

    Article  CAS  Google Scholar 

  59. 59.

    Shreve, T. et al. From prodigious volcanic degassing to caldera subsidence and quiescence at Ambrym (Vanuatu): the influence of regional tectonics. Sci. Rep. https://doi.org/10.1038/s41598-019-55141-7 (2019).

  60. 60.

    Olivier, G., Brenguier, F., Carey, R., Okubo, P. & Donaldson, C. Decrease in seismic velocity observed prior to the 2018 eruption of Kīlauea volcano with ambient seismic noise interferometry. Geophys. Res. Lett. 46, 3734–3744 (2019).

    ADS  Article  Google Scholar 

  61. 61.

    Mangan, M. T., Heliker, C. C., Mattox, T. N., Kauahikaua, J. P. & Helz, R. T. Episode 49 of the Pu‘u ‘O‘o-Kupaianaha eruption of Kilauea volcano—breakdown of a steady-state eruptive era. Bull. Volcanol. 57, 127–135 (1995).

    ADS  Google Scholar 

  62. 62.

    Kauahikaua, J., Mangan, M., Heliker, C. & Mattox, T. A quantitative look at the demise of a basaltic vent: the death of Kupaianaha, Kilauea Volcano, Hawai‘i. Bull. Volcanol. 57, 641–648 (1996).

    ADS  Article  Google Scholar 

  63. 63.

    Okubo, P. & Nakata, J. S. Tectonic pulses during Kīlauea’s current long-term eruption. U. S. Geol. Surv. Prof. Pap. 1676, 173–186 (2003).

    Google Scholar 

  64. 64.

    Klein, F. W., Koyanagi, R. Y., Nakata, J. S. & Tanigawa, W. R. The seismicity of Kilauea’s magma system. U. S. Geol. Surv. Prof. Pap. 1350, 1019–1185 (1987).

    Google Scholar 

  65. 65.

    Sigmundsson, F. et al. Segmented lateral dyke growth in a rifting event at Barðarbunga volcanic system, Iceland. Nature 517, 191–195 (2015).

  66. 66.

    Denlinger, R. P. Anatomy of Kilauea volcano. AGU Fall Meet. abstract V51A–06 (2019).

  67. 67.

    Farquharson, J. I. & Amelung, F. Extreme rainfall triggered the 2018 rift eruption at Kīlauea Volcano. Nature 580, 491–495 (2020).

    ADS  CAS  Article  Google Scholar 

  68. 68.

    Kauahikaua, J. P. & Trusdell, F. A. Have humans influenced volcanic activity on the lower East Rift Zone of Kīlauea Volcano? A publication review. U.S. Geol. Surv. Open-File Rep. https://doi.org/10.3133/ofr20201017 (2020).

  69. 69.

    Epp, D., Decker, R. & Okamura, A. T. Relation of summit deformation to East Rift Zone eruptions on Kilauea Volcano, Hawaii. Geophys. Res. Lett. 10, 493–496 (1983).

    ADS  Article  Google Scholar 

  70. 70.

    Liu, C., Lay, T. & Xiong, X. Rupture in the 4 May 2018 MW 6.9 Earthquake Seaward of the Kilauea East Rift Zone Fissure Eruption in Hawaii. Geophys. Res. Lett. 45, 9508–9515 (2018).

    ADS  Article  Google Scholar 

  71. 71.

    Segall, P., Anderson, K. R., Johanson, I. & Miklius, A. Mechanics of inflationary deformation during caldera collapse: evidence from the 2018 Kīlauea eruption. Geophys. Res. Lett. 46, 11782–11789 (2019).

    ADS  Article  Google Scholar 

  72. 72.

    Paine, R. T. Food webs: linkage, interaction strength and community infrastructure. J. Anim. Ecol. 49, 666–685 (1980).

    ADS  Article  Google Scholar 

  73. 73.

    Polis, G. A., Sears, A. L. W., Huxel, G. R., Strong, D. R. & Maron, J. When is a trophic cascade a trophic cascade? Trends Ecol. Evol. 15, 473–475 (2000).

    CAS  Article  Google Scholar 

  74. 74.

    Cashman, K. V. & Scheu, B. Magmatic Fragmentation. Chapter 25 in The Encyclopedia of Volcanoes pp. 459–471 (Elsevier Inc., 2015).

  75. 75.

    Walter, T. R. et al. Complex hazard cascade culminating in the Anak Krakatau sector collapse. Nat. Commun. 10, 4339 (2019).

  76. 76.

    Macdonald, G. A. & Eaton, J. P. Hawaiian Volcanoes During 1955. U.S Geol. Surv. Bull. 1171, 170 (1964).

  77. 77.

    Neal, C. A. & Anderson, K. R. Preliminary analyses of volcanic hazards at Kīlauea volcano, Hawai‘i, 2017–2018. U.S. Geol. Surv. Open-File Rep. https://doi.org/10.3133/ofr20201002 (2020).

  78. 78.

    Jaggar, T. & Finch, R. H. The explosive eruption of Kilauea in Hawaii. 1924. Am. J. Sci. VIII, 353–374 (1924).

    ADS  Article  Google Scholar 

  79. 79.

    Mackworth, N. H. Visual noise causes tunnel vision. Psychon. Sci. 3, 67–68 (1965).

    Article  Google Scholar 

  80. 80.

    Findley, K. A. & Scott, M. S. Multiple dimensions of tunnel vision in criminal cases. Wis. L. Rev. 291, 291–398 (2006).

    Google Scholar 

  81. 81.

    Calvari, S. et al. Lava effusion—a slow fuse for paroxysms at Stromboli volcano? Earth Planet. Sci. Lett. 301, 317–323 (2011).

    ADS  CAS  Article  Google Scholar 

  82. 82.

    Ripepe, M. et al. Forecasting effusive dynamics and decompression rates by magmastatic model at open-vent volcanoes. Sci. Rep. 7, 1–9 (2017).

    CAS  Article  Google Scholar 

  83. 83.

    Sparks, R. S. J. Forecasting volcanic eruptions. Earth Planet. Sci. Lett. 210, 1–15 (2003).

    ADS  CAS  Article  Google Scholar 

  84. 84.

    Gudmundsson, M. T. et al. Gradual caldera collapse at Bárdarbunga volcano, Iceland, regulated by lateral magma outflow. Science 353, aaf8988 (2016).

  85. 85.

    Staudacher, T. et al. The April 2007 eruption and the Dolomieu crater collapse, two major events at Piton de la Fournaise (La Réunion Island, Indian Ocean). J. Volcanol. Geotherm. Res. 184, 126–137 (2009).

    ADS  CAS  Article  Google Scholar 

  86. 86.

    Sigmundsson, F. et al. Unexpected large eruptions from buoyant magma bodies within viscoelastic crust. Nat. Commun. 11, 1–11 (2020).

    Article  CAS  Google Scholar 

  87. 87.

    Newhall, C. & Hoblitt, R. Constructing event trees for volcanic crises. Bull. Volcanol. 64, 3–20 (2002).

    ADS  Article  Google Scholar 

  88. 88.

    Neri, A. et al. Developing an event tree for probabilistic hazard and risk assessment at Vesuvius. J. Volcanol. Geotherm. Res. 178, 397–415 (2008).

    ADS  CAS  Article  Google Scholar 

  89. 89.

    Wright, H. M. N. et al. Construction of probabilistic event trees for eruption forecasting at Sinabung volcano, Indonesia 2013–14. J. Volcanol. Geotherm. Res. 382, 233–252 (2019).

    ADS  CAS  Article  Google Scholar 

  90. 90.

    Aspinall, W. P., Woo, G., Voight, B. & Baxter, P. J. Evidence-based volcanology: application to eruption crises. J. Volcanol. Geotherm. Res. 128, 273–285 (2003).

    ADS  CAS  Article  Google Scholar 

  91. 91.

    Hincks, T. K., Komorowski, J. C., Sparks, S. R. & Aspinall, W. P. Retrospective analysis of uncertain eruption precursors at La Soufrière volcano, Guadeloupe, 1975-77: Volcanic hazard assessment using a Bayesian Belief Network approach. J. Appl. Volcanol. 3, 3 (2014).

  92. 92.

    Sheldrake, T. E., Aspinall, W. P., Odbert, H. M., Wadge, G. & Sparks, R. S. J. Understanding causality and uncertainty in volcanic observations: An example of forecasting eruptive activity on Soufrière Hills Volcano, Montserrat. J. Volcanol. Geotherm. Res. 341, 287–300 (2017).

    ADS  CAS  Article  Google Scholar 

  93. 93.

    Giudicepietro, F. et al. Geophysical precursors of the July-August 2019 paroxysmal eruptive phase and their implications for Stromboli volcano (Italy) monitoring. Sci. Rep. 10, 1–17 (2020).

    Article  CAS  Google Scholar 

  94. 94.

    Miklius, A. et al. Global positioning system measurements on the Island of Hawai‘i: 1997 through 2004. U.S. Geol. Surv. Open-File Rep. http://pubs.usgs.gov/of/2005/1425/ (2005).

  95. 95.

    Okubo, P. G., Nakata, J. S. & Koyanagi, R. Y. The evolution of seismic monitoring systems at the Hawaiian Volcano Observatory. U. S. Geol. Surv. Prof. Pap. 1801, 67–94 (2014).

    Google Scholar 

  96. 96.

    Thelen, W. A. Seismic instrumentation plan for the Hawaiian Volcano Observatory. U. S. Geol. Surv. Sci. Investig. Rep. 2014–5179, 43 (2014).

    Google Scholar 

  97. 97.

    Elias, T., Kern, C., Horton, K. A., Sutton, A. J. & Garbeil, H. Measuring SO2 emission rates at Kīlauea volcano, Hawaii, using an array of upward-looking UV Spectrometers, 2014–2017. Front. Earth Sci. 6, 1–20 (2018).

    Article  Google Scholar 

  98. 98.

    Kern, C. et al. Quantifying gas emissions associated with the 2018 rift eruption of Kīlauea Volcano using ground-based DOAS measurements. Bull. Volcanol. 82, 55 (2020).

  99. 99.

    Orr, T. R., Bleacher, J. E., Patrick, M. R. & Wooten, K. M. A sinuous tumulus over an active lava tube at Kīlauea Volcano: Evolution, analogs, and hazard forecasts. J. Volcanol. Geotherm. Res. 291, 35–48 (2015).

    ADS  CAS  Article  Google Scholar 

  100. 100.

    Patrick, M., Orr, T., Fisher, G., Trusdell, F. & Kauahikaua, J. Thermal mapping of a pāhoehoe lava flow, Kīlauea Volcano. J. Volcanol. Geotherm. Res. 332, 71–87 (2017).

    ADS  CAS  Article  Google Scholar 

Comments

    Something to say?

    Log in or Sign up for free

    Disclaimer: The translated content is provided by third-party translation service providers, and IKCEST shall not assume any responsibility for the accuracy and legality of the content.
    Translate engine
    Article's language
    English
    中文
    Pусск
    Français
    Español
    العربية
    Português
    Kikongo
    Dutch
    kiswahili
    هَوُسَ
    IsiZulu
    Action
    Related

    Report

    Select your report category*



    Reason*



    By pressing send, your feedback will be used to improve IKCEST. Your privacy will be protected.

    Submit
    Cancel