Welcome to the IKCEST
Chemistry professor uses old materials to make newer, better solar cells

Chemistry professor uses old materials to make newer, better solar cells

Chemistry professor uses old materials to make newer, better solar cells
Biwu Ma, professor of chemistry and biochemistry, published a new study on how a novel structure could create blue light in a type of material called a perovskite. Credit: Florida State University

A Florida State University research team is mixing the old with the new to create a more stable solar cell.

Professor of Chemistry Biwu Ma and his team published a new study that shows if you add a layer of ancient organic pigment to a , it increases the stability and efficiency of the cell.

The study is published in the journal Angewandte Chemie .

"Pigments are abundant, low cost and robust," Ma said. "When we combine them with perovskites, we can generate new high-performance hybrid systems. It's using the old with the new, and together they produce something really exciting."

Ma's research in new generation solar cell technologies has been focusing on addressing the stability issues and challenges of perovskite . A perovskite solar cell is a type of photovoltaic cell which includes a perovskite- structured compound, most commonly an organic-inorganic lead or tin halide-based hybrid material, as the light-harvesting layer.

Over the past decade, research on perovskite solar has exploded. When they were first reported in 2009, the registered at about 4%, which is now as high as 25%. However, there are drawbacks for , such as the material's tendency to degrade quickly.

Researchers worldwide have been searching for that perfect formula to make them both stable and highly efficient.

The solar cell Ma's team used for the experiment—based on methylammonium lead iodide—had an efficiency of 18.9% without the layer of pigment. With it, that number rose to 21.1%. The team also found that with the addition of the pigment layer, the cell without encapsulation could retain 90% of its initial efficiency after 1,000 hours in ambient conditions.

Adding the layer of insoluble via facile solution processing and thermal annealing also makes the cell hydrophobic, meaning water cannot stay on the surface.

"We believe that surface passivation of these cells using low-cost pigments is a very promising approach to improving their stability and efficiency," Ma said.


Explore further

Efficient and durable perovskite solar cell materials

More information: Qingquan He et al. Highly Efficient and Stable Perovskite Solar Cells Enabled by Low‐Cost Industrial Organic Pigment Coating, Angewandte Chemie International Edition (2020). DOI: 10.1002/anie.202012095
Citation: Chemistry professor uses old materials to make newer, better solar cells (2020, December 2) retrieved 2 December 2020 from https://phys.org/news/2020-12-chemistry-professor-materials-solar-cells.html
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.

Original Text (This is the original text for your reference.)

Chemistry professor uses old materials to make newer, better solar cells

Chemistry professor uses old materials to make newer, better solar cells
Biwu Ma, professor of chemistry and biochemistry, published a new study on how a novel structure could create blue light in a type of material called a perovskite. Credit: Florida State University

A Florida State University research team is mixing the old with the new to create a more stable solar cell.

Professor of Chemistry Biwu Ma and his team published a new study that shows if you add a layer of ancient organic pigment to a , it increases the stability and efficiency of the cell.

The study is published in the journal Angewandte Chemie .

"Pigments are abundant, low cost and robust," Ma said. "When we combine them with perovskites, we can generate new high-performance hybrid systems. It's using the old with the new, and together they produce something really exciting."

Ma's research in new generation solar cell technologies has been focusing on addressing the stability issues and challenges of perovskite . A perovskite solar cell is a type of photovoltaic cell which includes a perovskite- structured compound, most commonly an organic-inorganic lead or tin halide-based hybrid material, as the light-harvesting layer.

Over the past decade, research on perovskite solar has exploded. When they were first reported in 2009, the registered at about 4%, which is now as high as 25%. However, there are drawbacks for , such as the material's tendency to degrade quickly.

Researchers worldwide have been searching for that perfect formula to make them both stable and highly efficient.

The solar cell Ma's team used for the experiment—based on methylammonium lead iodide—had an efficiency of 18.9% without the layer of pigment. With it, that number rose to 21.1%. The team also found that with the addition of the pigment layer, the cell without encapsulation could retain 90% of its initial efficiency after 1,000 hours in ambient conditions.

Adding the layer of insoluble via facile solution processing and thermal annealing also makes the cell hydrophobic, meaning water cannot stay on the surface.

"We believe that surface passivation of these cells using low-cost pigments is a very promising approach to improving their stability and efficiency," Ma said.


Explore further

Efficient and durable perovskite solar cell materials

More information: Qingquan He et al. Highly Efficient and Stable Perovskite Solar Cells Enabled by Low‐Cost Industrial Organic Pigment Coating, Angewandte Chemie International Edition (2020). DOI: 10.1002/anie.202012095
Citation: Chemistry professor uses old materials to make newer, better solar cells (2020, December 2) retrieved 2 December 2020 from https://phys.org/news/2020-12-chemistry-professor-materials-solar-cells.html
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.
Comments

    Something to say?

    Log in or Sign up for free

    Disclaimer: The translated content is provided by third-party translation service providers, and IKCEST shall not assume any responsibility for the accuracy and legality of the content.
    Translate engine
    Article's language
    English
    中文
    Pусск
    Français
    Español
    العربية
    Português
    Kikongo
    Dutch
    kiswahili
    هَوُسَ
    IsiZulu
    Action
    Related

    Report

    Select your report category*



    Reason*



    By pressing send, your feedback will be used to improve IKCEST. Your privacy will be protected.

    Submit
    Cancel