Welcome to the IKCEST
Structural and functional characterization of a putative de novo gene in Drosophila
  1. 1.

    Schlötterer, C. Genes from scratch—the evolutionary fate of de novo genes. Trends Genet. 31, 215–219 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  2. 2.

    McLysaght, A. & Hurst, L. D. Open questions in the study of de novo genes: what, how and why. Nat. Rev. Genet. 17, 567–578 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  3. 3.

    Schmitz, J. F. & Bornberg-Bauer, E. Fact or fiction: Updates on how protein-coding genes might emerge de novo from previously non-coding DNA. F1000Research 6, 57 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  4. 4.

    Van Oss, S. B. V. & Carvunis, A.-R. De novo gene birth. PLoS Genet. 15, e1008160 (2019).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  5. 5.

    Liberles, D. A., Kolesov, G. & Dittmar, K. Understanding gene duplication through biochemistry and population genetics. in Evolution after Gene Duplication, (eds Dittmar, K. & Liberles, D.) 1–21 (John Wiley & Sons, Ltd, 2011).

  6. 6.

    Bornberg-Bauer, E. & Albà, M. M. Dynamics and adaptive benefits of modular protein evolution. Curr. Opin. Struct. Biol. 23, 459–466 (2013).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  7. 7.

    Begun, D. J., Lindfors, H. A., Thompson, M. E. & Holloway, A. K. Recently evolved genes identified from Drosophila yakuba and D. erecta accessory gland expressed sequence tags. Genetics 172, 1675–1681 (2006).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  8. 8.

    Cai, J., Zhao, R., Jiang, H. & Wang, W. De novo origination of a new protein-coding gene in Saccharomyces cerevisiae. Genetics 179, 487–496 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  9. 9.

    Neme, R. & Tautz, D. Phylogenetic patterns of emergence of new genes support a model of frequent de novo evolution. BMC Genomics 14, 117 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  10. 10.

    McLysaght, A. & Guerzoni, D. New genes from non-coding sequence: the role of de novo protein-coding genes in eukaryotic evolutionary innovation. Philos. Trans. R. Soc. B Biol. Sci. 370, 20140332 (2015).

    Article  CAS  Google Scholar 

  11. 11.

    Schmitz, J. F., Ullrich, K. K. & Bornberg-Bauer, E. Incipient de novo genes can evolve from frozen accidents that escaped rapid transcript turnover. Nat. Ecol. Evol. 2, 1626–1632 (2018).

    PubMed  Article  PubMed Central  Google Scholar 

  12. 12.

    Vakirlis, N. et al. A molecular portrait of de novo genes in yeasts. Mol. Biol. Evol. 35, 631–645 (2018).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  13. 13.

    Prabh, N. & Rödelsperger, C. De novo, divergence, and mixed origin contribute to the emergence of orphan genes in pristionchus nematodes. G3 Genes Genomes Genet. 9, 2277–2286 (2019).

  14. 14.

    Zhang, L. et al. Rapid evolution of protein diversity by de novo origination in Oryza. Nat. Ecol. Evol. 3, 679 (2019).

    PubMed  Article  PubMed Central  Google Scholar 

  15. 15.

    Zhou, Q. et al. On the origin of new genes in Drosophila. Genome Res. 18, 1446–1455 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  16. 16.

    Carvunis, A.-R. et al. Proto-genes and de novo gene birth. Nature 487, 370–374 (2012).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  17. 17.

    Klasberg, S., Bitard-Feildel, T., Callebaut, I. & Bornberg-Bauer, E. Origins and structural properties of novel and de novo protein domains during insect evolution. FEBS J. 285, 2605–2625 (2018).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  18. 18.

    Zhao, L., Saelao, P., Jones, C. D. & Begun, D. J. Origin and spread of de novo genes in Drosophila melanogaster populations. Science 343, 769–772 (2014).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  19. 19.

    Ruiz-Orera, J., Messeguer, X., Subirana, J. A. & Albà, M. M. Long non-coding RNAs as a source of new peptides. eLife 3, e03523 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  20. 20.

    Palmieri, N., Kosiol, C. & Schlötterer, C. The life cycle of Drosophila orphan genes. eLife 3, e01311 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  21. 21.

    Levy, A. How evolution builds genes from scratch. Nature 574, 314–316 (2019).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  22. 22.

    Khalturin, K., Hemmrich, G., Fraune, S., Augustin, R. & Bosch, T. C. More than just orphans: are taxonomically-restricted genes important in evolution? Trends Genet. 25, 404–413 (2009).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  23. 23.

    Baalsrud, H. T. et al. De novo gene evolution of antifreeze glycoproteins in codfishes revealed by whole genome sequence data. Mol. Biol. Evol. 35, 593–606 (2018).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  24. 24.

    Zhuang, X., Yang, C., Murphy, K. R. & Cheng, C.-H. C. Molecular mechanism and history of non-sense to sense evolution of antifreeze glycoprotein gene in northern gadids. Proc. Natl Acad. Sci. USA 116, 4400–4405 (2019).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  25. 25.

    Chen, L., DeVries, A. L. & Cheng, C.-H. C. Convergent evolution of antifreeze glycoproteins in Antarctic notothenioid fish and Arctic cod. PNAS 94, 3817–3822 (1997).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  26. 26.

    Brockhausen, I., Schachter, H. & Stanley, P. O-GalNAc Glycans. in Essentials of Glycobiology, second edn. (eds Varki, A. et al.)  (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 2009).

  27. 27.

    Pan, X. et al. A DNA integrity network in the yeast Saccharomyces cerevisiae. Cell 124, 1069–1081 (2006).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  28. 28.

    Bungard, D. et al. Foldability of a natural de novo evolved protein. Structure 25, 1687–1696.e4 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  29. 29.

    Vakirlis, N. et al. De novo emergence of adaptive membrane proteins from thymine-rich genomic sequences. Nat. Commun. 11, 781 (2020).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  30. 30.

    Gubala, A. M. et al. The goddard and saturn genes are essential for Drosophila male fertility and may have arisen de novo. Mol. Biol. Evol. 34, 1066–1082 (2017).

  31. 31.

    Keeling, D. M., Garza, P., Nartey, C. M. & Carvunis, A.-R. The meanings of ’function’ in biology and the problematic case of de novo gene emergence. eLife 8, e47014 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  32. 32.

    Lupas, A., Van Dyke, M. & Stock, J. Predicting coiled coils from protein sequences. Science 252, 1162–1164 (1991).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  33. 33.

    Truebestein L, Leonard TA. Coiled-coils: The long and short of it. Bioessays 38. 903–916 https://doi.org/10.1002/bies.201600062 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  34. 34.

    Xu, D. & Zhang, Y. Toward optimal fragment generations for ab initio protein structure assembly. Proteins 81, 229–239 (2013).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  35. 35.

    Reva, B. A., Finkelstein, A. V. & Skolnick, J. What is the probability of a chance prediction of a protein structure with an RMSD of 6 A? Fold Des. 3, 141–147 (1998).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  36. 36.

    Berendsen, H. J. C., van der Spoel, D. & van Drunen, R. GROMACS: a message-passing parallel molecular dynamics implementation. Comput. Phys. Commu. 91, 43–56 (1995).

    ADS  CAS  Article  Google Scholar 

  37. 37.

    Pronk, S. et al. GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit. Bioinformatics 29, 845–854 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  38. 38.

    Abraham, M. J. et al. GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1-2, 19–25 (2015).

    ADS  Article  Google Scholar 

  39. 39.

    Yang, J.-M. & Tung, C.-H. Protein structure database search and evolutionary classification. Nucleic Acids Res. 34, 3646–3659 (2006).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  40. 40.

    Tung, C.-H., Huang, J.-W. & Yang, J.-M. Kappa-alpha plot derived structural alphabet and BLOSUM-like substitution matrix for rapid search of protein structure database. Genome Biol. 8, R31 (2007).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  41. 41.

    Dong, R., Pan, S., Peng, Z., Zhang, Y. & Yang, J. mTM-align: a server for fast protein structure database search and multiple protein structure alignment. Nucleic Acids Res. 46, W380–W386 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  42. 42.

    Kelly, S. M., Jess, T. J. & Price, N. C. How to study proteins by circular dichroism. Biochim. Biophys. Acta BBA - Proteins Proteomics 1751, 119–139 (2005).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  43. 43.

    Greenfield, N. J. Using circular dichroism spectra to estimate protein secondary structure. Nat. Protoc. 1, 2876–2890 (2006).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  44. 44.

    Louis-Jeune, C., Andrade-Navarro, M. A. & Perez-Iratxeta, C. Prediction of protein secondary structure from circular dichroism using theoretically derived spectra. Proteins 80, 374–381 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  45. 45.

    Jinek, M. et al. RNA-Programmed genome editing in human cells. eLife 2, e00471 (2013).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  46. 46.

    Fabian, L. & Brill, J. A. Drosophila spermiogenesis. Spermatogenesis 2, 197–212 (2012).

    PubMed  PubMed Central  Article  Google Scholar 

  47. 47.

    Basiri, M. L. et al. A migrating ciliary gate compartmentalizes the site of axoneme assembly in Drosophila spermatids. Curr. Biol. 24, 2622–2631 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  48. 48.

    Soulavie, F. et al. Hemingway is required for sperm flagella assembly and ciliary motility in Drosophila. MBoC 25, 1276–1286 (2014).

    PubMed  Article  PubMed Central  Google Scholar 

  49. 49.

    Santel, A., Winhauer, T., Blümer, N. & Renkawitz-Pohl, R. The Drosophila don juan (dj) gene encodes a novel sperm specific protein component characterized by an unusual domain of a repetitive amino acid motif. Mech. Dev. 64, 19–30 (1997).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  50. 50.

    Oliva, R. & Dixon, G. H. Vertebrate protamine genes and the histone-to-protamine replacement reaction. in  Progress in Nucleic Acid Research and Molecular Biology, Vol. 40 (eds Cohn, W. E. & Moldave, K.) 25–94 (Academic Press, 1991).

  51. 51.

    Jayaramaiah Raja, S. & Renkawitz-Pohl, R. Replacement by Drosophila melanogaster protamines and Mst77F of Histones during chromatin condensation in late spermatids and role of sesame in the removal of these proteins from the male pronucleus. Mol. Cell Biol. 25, 6165–6177 (2005).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  52. 52.

    Tokuyasu, K. T. Dynamics of spermiogenesis in Drosophila melanogaster. 3. Relation between axoneme and mitochondrial derivatives. Exp. Cell Res. 84, 239–250 (1974).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  53. 53.

    Begun, D. J., Lindfors, H. A., Kern, A. D. & Jones, C. D. Evidence for de novo evolution of testis-expressed genes in the Drosophila yakuba/Drosophila erecta clade. Genetics 176, 1131–1137 (2007).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  54. 54.

    Moyers, B. A. & Zhang, J. Phylostratigraphic bias creates spurious patterns of genome evolution. Mol. Biol. Evol. 32, 258–267 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  55. 55.

    Domazet-Lošo, T. et al. No evidence for phylostratigraphic bias impacting inferences on patterns of gene emergence and evolution. Mol. Biol. Evol. 34, 843–856 (2017).

    PubMed  PubMed Central  Google Scholar 

  56. 56.

    Weisman, C. M., Murray, A. W. & Eddy, S. R. Many, but not all, lineage-specific genes can be explained by homology detection failure. PLoS Biol. 18, e3000862 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  57. 57.

    Babu, M. M. The contribution of intrinsically disordered regions to protein function, cellular complexity, and human disease. Biochem. Soc. Trans. 44, 1185–1200 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  58. 58.

    Toll-Riera, M. & Albà, M. M. Emergence of novel domains in proteins. BMC Evol. Biol. 13, 47 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  59. 59.

    Kleppe, A. S. & Bornberg-Bauer, E. Robustness by intrinsically disordered C-termini and translational readthrough. Nucleic Acids Res. 46, 10184–10194 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  60. 60.

    Bitard-Feildel, T., Heberlein, M., Bornberg-Bauer, E. & Callebaut, I. Detection of orphan domains in Drosophila using "hydrophobic cluster analysis”. Biochimi 119, 244–253 (2015).

  61. 61.

    Tretyachenko, V. et al. Random protein sequences can form defined secondary structures and are well-tolerated in vivo. Sci. Rep. 7, 15449 (2017).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  62. 62.

    Maia, T. M., Gogendeau, D., Pennetier, C., Janke, C. & Basto, R. Bug22 influences cilium morphology and the post-translational modification of ciliary microtubules. Biol. Open 3, 138–151 (2014).

    Article  Google Scholar 

  63. 63.

    Tokuyasu, K. T., Peacock, W. J. & Hardy, R. W. Dynamics of spermiogenesis in Drosophila melanogaster. Z. Zellforsch. 124, 479–506 (1972).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  64. 64.

    Arama, E., Agapite, J. & Steller, H. Caspase activity and a specific cytochrome c are required for sperm differentiation in drosophila. Dev. Cell 4, 687–697 (2003).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  65. 65.

    Vieillard, J. et al. Transition zone assembly and its contribution to axoneme formation in Drosophila male germ cells. J. Cell Biol. 214, 875–889 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  66. 66.

    Rogowski, K. et al. Evolutionary divergence of enzymatic mechanisms for posttranslational polyglycylation. Cell 137, 1076–1087 (2009).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  67. 67.

    Joly, D. & Lachaise, D. Polymorphism in the sperm heteromorphic species of the Drosophila obscura group. J. Insect Physiol. 40, 933–938 (1994).

    CAS  Article  Google Scholar 

  68. 68.

    Pitnick, S., Hosken, D. J. & Birkhead, T. R. Sperm morphological diversity. in Sperm Biology. (eds Birkhead, T. R. et al.) 69–149 (Academic Press, London, 2009).

  69. 69.

    de Almeida Rego, Ld. N. A., Alevi, K. C. C., de Azeredo-Oliveira, M. T. V. & Madi-Ravazzi, L. Ultrastructural features of spermatozoa and their phylogenetic application in Zaprionus (Diptera, Drosophilidae). Fly 10, 47–52 (2016).

    PubMed Central  Article  Google Scholar 

  70. 70.

    Ruiz-Orera, J. et al. Origins of de novo genes in human and chimpanzee. PLoS Genet. 11, e1005721 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  71. 71.

    Sormanni, P. et al. Simultaneous quantification of protein order and disorder. Nat. Chem. Biol. 13, 339–342 (2017).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  72. 72.

    Jones, D. T. Protein secondary structure prediction based on position-specific scoring matrices. J. Mol. Biol. 292, 195–202 (1999).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  73. 73.

    Gruber, M., Söding, J. & Lupas, A. N. Comparative analysis of coiled-coil prediction methods. J. Struct. Biol. 155, 140–145 (2006).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  74. 74.

    Alva, V., Nam, S.-Z., Söding, J. & Lupas, A. N. The MPI bioinformatics Toolkit as an integrative platform for advanced protein sequence and structure analysis. Nucleic Acids Res. 44, W410–415 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  75. 75.

    Xu, D. & Zhang, Y. Ab initio protein structure assembly using continuous structure fragments and optimized knowledge-based force field. Proteins 80, 1715–1735 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  76. 76.

    Braberg, H. et al. SALIGN: a web server for alignment of multiple protein sequences and structures. Bioinformatics 28, 2072–2073 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  77. 77.

    Gasteiger, E. et al. Protein identification and analysis tools on the ExPASy server. in The Proteomics Protocols Handbook, (ed. Walker, J. M.) 571–607 (Humana Press, 2005).

  78. 78.

    Fernandez-Escamilla, A.-M., Rousseau, F., Schymkowitz, J. & Serrano, L. Prediction of sequence-dependent and mutational effects on the aggregation of peptides and proteins. Nat. Biotechnol. 22, 1302–1306 (2004).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  79. 79.

    Sormanni, P., Aprile, F. A. & Vendruscolo, M. The CamSol method of rational design of protein mutants with enhanced solubility. J. Mol. Biol. 427, 478–490 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  80. 80.

    Lancaster, A. K., Nutter-Upham, A., Lindquist, S. & King, O. D. PLAAC: a web and command-line application to identify proteins with prion-like amino acid composition. Bioinformatics 30, 2501–2502 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  81. 81.

    Altschul, S. F. et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389–3402 (1997).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  82. 82.

    Notredame, C., Higgins, D. G. & Heringa, J. T-Coffee: a novel method for fast and accurate multiple sequence alignment. J. Mol. Biol. 302, 205–217 (2000).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  83. 83.

    Stamatakis, A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  84. 84.

    Aadland, K., Pugh, C. & Kolaczkowski, B. High-throughput reconstruction of ancestral protein sequence, structure, and molecular function. in Computational Methods in Protein Evolution, Methods in Molecular Biology. (ed. Sikosek, T.)  63–81 (Springer New York, 2019).

  85. 85.

    Humphrey, W., Dalke, A. & Schulten, K. VMD: visual molecular dynamics. J. Mol. Graphics 14, 33–38 (1996).

    CAS  Article  Google Scholar 

  86. 86.

    Manier, M. K. et al. Resolving mechanisms of competitive fertilization success in Drosophila melanogaster. Science 328, 354–357 (2010).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  87. 87.

    Gratz, S. J. et al. Highly specific and efficient CRISPR/Cas9-catalyzed homology-directed repair in Drosophila. Genetics 196, 961–971 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  88. 88.

    Ge, D. T., Tipping, C., Brodsky, M. H. & Zamore, P. D. Rapid screening for CRISPR-directed editing of the Drosophila genome using white coconversion. G3 Bethesda 6, 3197–3206 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  89. 89.

    Schindelin, J. et al. Fiji—an open source platform for biological image analysis. Nat. Methods 9, 676–682 (2012).

  90. 90.

    Karlsson, E. et al. Coupled binding and helix formation monitored by synchrotron-radiation circular dichroism. Biophys. J. 117, 729–742 (2019).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  91. 91.

    The PyMOL Molecular Graphics System, Version 1.8.4 Schrödinger, LLC. www.pymol.org.

Original Text (This is the original text for your reference.)

  1. 1.

    Schlötterer, C. Genes from scratch—the evolutionary fate of de novo genes. Trends Genet. 31, 215–219 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  2. 2.

    McLysaght, A. & Hurst, L. D. Open questions in the study of de novo genes: what, how and why. Nat. Rev. Genet. 17, 567–578 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  3. 3.

    Schmitz, J. F. & Bornberg-Bauer, E. Fact or fiction: Updates on how protein-coding genes might emerge de novo from previously non-coding DNA. F1000Research 6, 57 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  4. 4.

    Van Oss, S. B. V. & Carvunis, A.-R. De novo gene birth. PLoS Genet. 15, e1008160 (2019).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  5. 5.

    Liberles, D. A., Kolesov, G. & Dittmar, K. Understanding gene duplication through biochemistry and population genetics. in Evolution after Gene Duplication, (eds Dittmar, K. & Liberles, D.) 1–21 (John Wiley & Sons, Ltd, 2011).

  6. 6.

    Bornberg-Bauer, E. & Albà, M. M. Dynamics and adaptive benefits of modular protein evolution. Curr. Opin. Struct. Biol. 23, 459–466 (2013).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  7. 7.

    Begun, D. J., Lindfors, H. A., Thompson, M. E. & Holloway, A. K. Recently evolved genes identified from Drosophila yakuba and D. erecta accessory gland expressed sequence tags. Genetics 172, 1675–1681 (2006).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  8. 8.

    Cai, J., Zhao, R., Jiang, H. & Wang, W. De novo origination of a new protein-coding gene in Saccharomyces cerevisiae. Genetics 179, 487–496 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  9. 9.

    Neme, R. & Tautz, D. Phylogenetic patterns of emergence of new genes support a model of frequent de novo evolution. BMC Genomics 14, 117 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  10. 10.

    McLysaght, A. & Guerzoni, D. New genes from non-coding sequence: the role of de novo protein-coding genes in eukaryotic evolutionary innovation. Philos. Trans. R. Soc. B Biol. Sci. 370, 20140332 (2015).

    Article  CAS  Google Scholar 

  11. 11.

    Schmitz, J. F., Ullrich, K. K. & Bornberg-Bauer, E. Incipient de novo genes can evolve from frozen accidents that escaped rapid transcript turnover. Nat. Ecol. Evol. 2, 1626–1632 (2018).

    PubMed  Article  PubMed Central  Google Scholar 

  12. 12.

    Vakirlis, N. et al. A molecular portrait of de novo genes in yeasts. Mol. Biol. Evol. 35, 631–645 (2018).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  13. 13.

    Prabh, N. & Rödelsperger, C. De novo, divergence, and mixed origin contribute to the emergence of orphan genes in pristionchus nematodes. G3 Genes Genomes Genet. 9, 2277–2286 (2019).

  14. 14.

    Zhang, L. et al. Rapid evolution of protein diversity by de novo origination in Oryza. Nat. Ecol. Evol. 3, 679 (2019).

    PubMed  Article  PubMed Central  Google Scholar 

  15. 15.

    Zhou, Q. et al. On the origin of new genes in Drosophila. Genome Res. 18, 1446–1455 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  16. 16.

    Carvunis, A.-R. et al. Proto-genes and de novo gene birth. Nature 487, 370–374 (2012).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  17. 17.

    Klasberg, S., Bitard-Feildel, T., Callebaut, I. & Bornberg-Bauer, E. Origins and structural properties of novel and de novo protein domains during insect evolution. FEBS J. 285, 2605–2625 (2018).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  18. 18.

    Zhao, L., Saelao, P., Jones, C. D. & Begun, D. J. Origin and spread of de novo genes in Drosophila melanogaster populations. Science 343, 769–772 (2014).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  19. 19.

    Ruiz-Orera, J., Messeguer, X., Subirana, J. A. & Albà, M. M. Long non-coding RNAs as a source of new peptides. eLife 3, e03523 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  20. 20.

    Palmieri, N., Kosiol, C. & Schlötterer, C. The life cycle of Drosophila orphan genes. eLife 3, e01311 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  21. 21.

    Levy, A. How evolution builds genes from scratch. Nature 574, 314–316 (2019).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  22. 22.

    Khalturin, K., Hemmrich, G., Fraune, S., Augustin, R. & Bosch, T. C. More than just orphans: are taxonomically-restricted genes important in evolution? Trends Genet. 25, 404–413 (2009).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  23. 23.

    Baalsrud, H. T. et al. De novo gene evolution of antifreeze glycoproteins in codfishes revealed by whole genome sequence data. Mol. Biol. Evol. 35, 593–606 (2018).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  24. 24.

    Zhuang, X., Yang, C., Murphy, K. R. & Cheng, C.-H. C. Molecular mechanism and history of non-sense to sense evolution of antifreeze glycoprotein gene in northern gadids. Proc. Natl Acad. Sci. USA 116, 4400–4405 (2019).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  25. 25.

    Chen, L., DeVries, A. L. & Cheng, C.-H. C. Convergent evolution of antifreeze glycoproteins in Antarctic notothenioid fish and Arctic cod. PNAS 94, 3817–3822 (1997).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  26. 26.

    Brockhausen, I., Schachter, H. & Stanley, P. O-GalNAc Glycans. in Essentials of Glycobiology, second edn. (eds Varki, A. et al.)  (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 2009).

  27. 27.

    Pan, X. et al. A DNA integrity network in the yeast Saccharomyces cerevisiae. Cell 124, 1069–1081 (2006).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  28. 28.

    Bungard, D. et al. Foldability of a natural de novo evolved protein. Structure 25, 1687–1696.e4 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  29. 29.

    Vakirlis, N. et al. De novo emergence of adaptive membrane proteins from thymine-rich genomic sequences. Nat. Commun. 11, 781 (2020).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  30. 30.

    Gubala, A. M. et al. The goddard and saturn genes are essential for Drosophila male fertility and may have arisen de novo. Mol. Biol. Evol. 34, 1066–1082 (2017).

  31. 31.

    Keeling, D. M., Garza, P., Nartey, C. M. & Carvunis, A.-R. The meanings of ’function’ in biology and the problematic case of de novo gene emergence. eLife 8, e47014 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  32. 32.

    Lupas, A., Van Dyke, M. & Stock, J. Predicting coiled coils from protein sequences. Science 252, 1162–1164 (1991).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  33. 33.

    Truebestein L, Leonard TA. Coiled-coils: The long and short of it. Bioessays 38. 903–916 https://doi.org/10.1002/bies.201600062 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  34. 34.

    Xu, D. & Zhang, Y. Toward optimal fragment generations for ab initio protein structure assembly. Proteins 81, 229–239 (2013).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  35. 35.

    Reva, B. A., Finkelstein, A. V. & Skolnick, J. What is the probability of a chance prediction of a protein structure with an RMSD of 6 A? Fold Des. 3, 141–147 (1998).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  36. 36.

    Berendsen, H. J. C., van der Spoel, D. & van Drunen, R. GROMACS: a message-passing parallel molecular dynamics implementation. Comput. Phys. Commu. 91, 43–56 (1995).

    ADS  CAS  Article  Google Scholar 

  37. 37.

    Pronk, S. et al. GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit. Bioinformatics 29, 845–854 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  38. 38.

    Abraham, M. J. et al. GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1-2, 19–25 (2015).

    ADS  Article  Google Scholar 

  39. 39.

    Yang, J.-M. & Tung, C.-H. Protein structure database search and evolutionary classification. Nucleic Acids Res. 34, 3646–3659 (2006).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  40. 40.

    Tung, C.-H., Huang, J.-W. & Yang, J.-M. Kappa-alpha plot derived structural alphabet and BLOSUM-like substitution matrix for rapid search of protein structure database. Genome Biol. 8, R31 (2007).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  41. 41.

    Dong, R., Pan, S., Peng, Z., Zhang, Y. & Yang, J. mTM-align: a server for fast protein structure database search and multiple protein structure alignment. Nucleic Acids Res. 46, W380–W386 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  42. 42.

    Kelly, S. M., Jess, T. J. & Price, N. C. How to study proteins by circular dichroism. Biochim. Biophys. Acta BBA - Proteins Proteomics 1751, 119–139 (2005).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  43. 43.

    Greenfield, N. J. Using circular dichroism spectra to estimate protein secondary structure. Nat. Protoc. 1, 2876–2890 (2006).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  44. 44.

    Louis-Jeune, C., Andrade-Navarro, M. A. & Perez-Iratxeta, C. Prediction of protein secondary structure from circular dichroism using theoretically derived spectra. Proteins 80, 374–381 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  45. 45.

    Jinek, M. et al. RNA-Programmed genome editing in human cells. eLife 2, e00471 (2013).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  46. 46.

    Fabian, L. & Brill, J. A. Drosophila spermiogenesis. Spermatogenesis 2, 197–212 (2012).

    PubMed  PubMed Central  Article  Google Scholar 

  47. 47.

    Basiri, M. L. et al. A migrating ciliary gate compartmentalizes the site of axoneme assembly in Drosophila spermatids. Curr. Biol. 24, 2622–2631 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  48. 48.

    Soulavie, F. et al. Hemingway is required for sperm flagella assembly and ciliary motility in Drosophila. MBoC 25, 1276–1286 (2014).

    PubMed  Article  PubMed Central  Google Scholar 

  49. 49.

    Santel, A., Winhauer, T., Blümer, N. & Renkawitz-Pohl, R. The Drosophila don juan (dj) gene encodes a novel sperm specific protein component characterized by an unusual domain of a repetitive amino acid motif. Mech. Dev. 64, 19–30 (1997).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  50. 50.

    Oliva, R. & Dixon, G. H. Vertebrate protamine genes and the histone-to-protamine replacement reaction. in  Progress in Nucleic Acid Research and Molecular Biology, Vol. 40 (eds Cohn, W. E. & Moldave, K.) 25–94 (Academic Press, 1991).

  51. 51.

    Jayaramaiah Raja, S. & Renkawitz-Pohl, R. Replacement by Drosophila melanogaster protamines and Mst77F of Histones during chromatin condensation in late spermatids and role of sesame in the removal of these proteins from the male pronucleus. Mol. Cell Biol. 25, 6165–6177 (2005).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  52. 52.

    Tokuyasu, K. T. Dynamics of spermiogenesis in Drosophila melanogaster. 3. Relation between axoneme and mitochondrial derivatives. Exp. Cell Res. 84, 239–250 (1974).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  53. 53.

    Begun, D. J., Lindfors, H. A., Kern, A. D. & Jones, C. D. Evidence for de novo evolution of testis-expressed genes in the Drosophila yakuba/Drosophila erecta clade. Genetics 176, 1131–1137 (2007).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  54. 54.

    Moyers, B. A. & Zhang, J. Phylostratigraphic bias creates spurious patterns of genome evolution. Mol. Biol. Evol. 32, 258–267 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  55. 55.

    Domazet-Lošo, T. et al. No evidence for phylostratigraphic bias impacting inferences on patterns of gene emergence and evolution. Mol. Biol. Evol. 34, 843–856 (2017).

    PubMed  PubMed Central  Google Scholar 

  56. 56.

    Weisman, C. M., Murray, A. W. & Eddy, S. R. Many, but not all, lineage-specific genes can be explained by homology detection failure. PLoS Biol. 18, e3000862 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  57. 57.

    Babu, M. M. The contribution of intrinsically disordered regions to protein function, cellular complexity, and human disease. Biochem. Soc. Trans. 44, 1185–1200 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  58. 58.

    Toll-Riera, M. & Albà, M. M. Emergence of novel domains in proteins. BMC Evol. Biol. 13, 47 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  59. 59.

    Kleppe, A. S. & Bornberg-Bauer, E. Robustness by intrinsically disordered C-termini and translational readthrough. Nucleic Acids Res. 46, 10184–10194 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  60. 60.

    Bitard-Feildel, T., Heberlein, M., Bornberg-Bauer, E. & Callebaut, I. Detection of orphan domains in Drosophila using "hydrophobic cluster analysis”. Biochimi 119, 244–253 (2015).

  61. 61.

    Tretyachenko, V. et al. Random protein sequences can form defined secondary structures and are well-tolerated in vivo. Sci. Rep. 7, 15449 (2017).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  62. 62.

    Maia, T. M., Gogendeau, D., Pennetier, C., Janke, C. & Basto, R. Bug22 influences cilium morphology and the post-translational modification of ciliary microtubules. Biol. Open 3, 138–151 (2014).

    Article  Google Scholar 

  63. 63.

    Tokuyasu, K. T., Peacock, W. J. & Hardy, R. W. Dynamics of spermiogenesis in Drosophila melanogaster. Z. Zellforsch. 124, 479–506 (1972).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  64. 64.

    Arama, E., Agapite, J. & Steller, H. Caspase activity and a specific cytochrome c are required for sperm differentiation in drosophila. Dev. Cell 4, 687–697 (2003).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  65. 65.

    Vieillard, J. et al. Transition zone assembly and its contribution to axoneme formation in Drosophila male germ cells. J. Cell Biol. 214, 875–889 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  66. 66.

    Rogowski, K. et al. Evolutionary divergence of enzymatic mechanisms for posttranslational polyglycylation. Cell 137, 1076–1087 (2009).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  67. 67.

    Joly, D. & Lachaise, D. Polymorphism in the sperm heteromorphic species of the Drosophila obscura group. J. Insect Physiol. 40, 933–938 (1994).

    CAS  Article  Google Scholar 

  68. 68.

    Pitnick, S., Hosken, D. J. & Birkhead, T. R. Sperm morphological diversity. in Sperm Biology. (eds Birkhead, T. R. et al.) 69–149 (Academic Press, London, 2009).

  69. 69.

    de Almeida Rego, Ld. N. A., Alevi, K. C. C., de Azeredo-Oliveira, M. T. V. & Madi-Ravazzi, L. Ultrastructural features of spermatozoa and their phylogenetic application in Zaprionus (Diptera, Drosophilidae). Fly 10, 47–52 (2016).

    PubMed Central  Article  Google Scholar 

  70. 70.

    Ruiz-Orera, J. et al. Origins of de novo genes in human and chimpanzee. PLoS Genet. 11, e1005721 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  71. 71.

    Sormanni, P. et al. Simultaneous quantification of protein order and disorder. Nat. Chem. Biol. 13, 339–342 (2017).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  72. 72.

    Jones, D. T. Protein secondary structure prediction based on position-specific scoring matrices. J. Mol. Biol. 292, 195–202 (1999).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  73. 73.

    Gruber, M., Söding, J. & Lupas, A. N. Comparative analysis of coiled-coil prediction methods. J. Struct. Biol. 155, 140–145 (2006).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  74. 74.

    Alva, V., Nam, S.-Z., Söding, J. & Lupas, A. N. The MPI bioinformatics Toolkit as an integrative platform for advanced protein sequence and structure analysis. Nucleic Acids Res. 44, W410–415 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  75. 75.

    Xu, D. & Zhang, Y. Ab initio protein structure assembly using continuous structure fragments and optimized knowledge-based force field. Proteins 80, 1715–1735 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  76. 76.

    Braberg, H. et al. SALIGN: a web server for alignment of multiple protein sequences and structures. Bioinformatics 28, 2072–2073 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  77. 77.

    Gasteiger, E. et al. Protein identification and analysis tools on the ExPASy server. in The Proteomics Protocols Handbook, (ed. Walker, J. M.) 571–607 (Humana Press, 2005).

  78. 78.

    Fernandez-Escamilla, A.-M., Rousseau, F., Schymkowitz, J. & Serrano, L. Prediction of sequence-dependent and mutational effects on the aggregation of peptides and proteins. Nat. Biotechnol. 22, 1302–1306 (2004).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  79. 79.

    Sormanni, P., Aprile, F. A. & Vendruscolo, M. The CamSol method of rational design of protein mutants with enhanced solubility. J. Mol. Biol. 427, 478–490 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  80. 80.

    Lancaster, A. K., Nutter-Upham, A., Lindquist, S. & King, O. D. PLAAC: a web and command-line application to identify proteins with prion-like amino acid composition. Bioinformatics 30, 2501–2502 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  81. 81.

    Altschul, S. F. et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389–3402 (1997).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  82. 82.

    Notredame, C., Higgins, D. G. & Heringa, J. T-Coffee: a novel method for fast and accurate multiple sequence alignment. J. Mol. Biol. 302, 205–217 (2000).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  83. 83.

    Stamatakis, A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  84. 84.

    Aadland, K., Pugh, C. & Kolaczkowski, B. High-throughput reconstruction of ancestral protein sequence, structure, and molecular function. in Computational Methods in Protein Evolution, Methods in Molecular Biology. (ed. Sikosek, T.)  63–81 (Springer New York, 2019).

  85. 85.

    Humphrey, W., Dalke, A. & Schulten, K. VMD: visual molecular dynamics. J. Mol. Graphics 14, 33–38 (1996).

    CAS  Article  Google Scholar 

  86. 86.

    Manier, M. K. et al. Resolving mechanisms of competitive fertilization success in Drosophila melanogaster. Science 328, 354–357 (2010).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  87. 87.

    Gratz, S. J. et al. Highly specific and efficient CRISPR/Cas9-catalyzed homology-directed repair in Drosophila. Genetics 196, 961–971 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  88. 88.

    Ge, D. T., Tipping, C., Brodsky, M. H. & Zamore, P. D. Rapid screening for CRISPR-directed editing of the Drosophila genome using white coconversion. G3 Bethesda 6, 3197–3206 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  89. 89.

    Schindelin, J. et al. Fiji—an open source platform for biological image analysis. Nat. Methods 9, 676–682 (2012).

  90. 90.

    Karlsson, E. et al. Coupled binding and helix formation monitored by synchrotron-radiation circular dichroism. Biophys. J. 117, 729–742 (2019).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  91. 91.

    The PyMOL Molecular Graphics System, Version 1.8.4 Schrödinger, LLC. www.pymol.org.

Comments

    Something to say?

    Log in or Sign up for free

    Disclaimer: The translated content is provided by third-party translation service providers, and IKCEST shall not assume any responsibility for the accuracy and legality of the content.
    Translate engine
    Article's language
    English
    中文
    Pусск
    Français
    Español
    العربية
    Português
    Kikongo
    Dutch
    kiswahili
    هَوُسَ
    IsiZulu
    Action
    Related

    Report

    Select your report category*



    Reason*



    By pressing send, your feedback will be used to improve IKCEST. Your privacy will be protected.

    Submit
    Cancel